Skip to main content

On a Multilevel Preconditioner and its Condition Numbers for the Discretized Laplacian on Full and Sparse Grids in Higher Dimensions

  • Chapter
  • First Online:
Singular Phenomena and Scaling in Mathematical Models

Abstract

We first discretize the d-dimensional Laplacian in (0, 1)d for varying d on a full uniform grid and build a new preconditioner that is based on a multilevel generating system. We show that the resulting condition number is bounded by a constant that is independent of both, the level of discretization J and the dimension d. Then, we consider so-called sparse grid spaces, which offer nearly the same accuracy with far less degrees of freedom for function classes that involve bounded mixed derivatives. We introduce an analogous multilevel preconditioner and show that it possesses condition numbers which are at least as good as these of the full grid case. In fact, for sparse grids we even observe falling condition numbers with rising dimension in our numerical experiments. Furthermore, we discuss the cost of the algorithmic implementations. It is linear in the degrees of freedom of the respective multilevel generating system. For completeness, we also consider the case of a sparse grid discretization using prewavelets and compare its properties to those obtained with the generating system approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Non-local basis functions (p-version) are likely to result in a Toeplitz-type matrix, which can be inverted in log-linear time.

  2. 2.

    Note that it is even possible to execute this matrix-vector product in \(\mathcal{O}(d \cdot N_{d,J})\) operations by the successive multiplications of M d, J and of \(\mathbf{A}_{d,J}\mathbf{M}_{d,J}^{-1} =\sum _{ p=1}^{d}(\bigotimes _{q=1}^{p-1}\mathbf{I}_{J}) \otimes \mathbf{A}_{1,J}\mathbf{M}_{1,J}^{-1} \otimes (\bigotimes _{q=p+1}^{d}\mathbf{I}_{J})\).

  3. 3.

    In this paper, we restrict ourselves to homogeneous boundary conditions and do not introduce functions at the boundary. However, by \(u = u_{{\varOmega }^{d}} + u_{\varGamma }\) with \(u_{{\varOmega }^{d}}\vert _{\varGamma } = 0\) and \(-\varDelta u_{{\varOmega }^{d}} = f +\varDelta u_{\varGamma }\), we cover any case with Dirichlet boundary functions u Γ  = g on Γ.

  4. 4.

    This holds for a range of parameters 0 ≤ s < t ≤ r with r being the order of the spline of the space construction. In our case of linear splines r = 2 holds.

  5. 5.

    Note that an additional logarithmic term appears in the error estimate for s = 0, cf. [15].

  6. 6.

    Here, the level J of the full grid is to be equal to the level J of the regular sparse grid or equal to the finest level involved in \(\mathcal{I}\) for the general sparse grid.

References

  1. Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23(6), 1482–1518 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Babuška, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM Rev. 52(2), 317–355 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bäck, J., Nobile, F., Tamellini, L., Tempone, R.: Stochastic spectral Galerkin and collocation methods for PDEs with random coefficients: a numerical comparison. In: Hesthaven, J., Rönquist, E. (eds.) Spectral and High Order Methods for Partial Differential Equations. Volume 76 of Lecture Notes in Computational Science and Engineering, pp. 43–62. Springer Berlin/Heidelberg (2011)

    Google Scholar 

  4. Balder, R., Zenger, C.: The solution of multidimensional real Helmholtz equations on sparse grids. SIAM J. Sci. Comput. 17, 631–646 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Balescu, R.: Statistical Dynamics: Matter Out of Equilibrium. Imperial College Press, London (1997)

    Book  MATH  Google Scholar 

  6. Bellman, R.: Adaptive Control Processes: A Guided Tour. Princeton University Press, Princeton (1961)

    MATH  Google Scholar 

  7. Berman, A., Plemmons, R.: Nonnegative Matrices in the Mathematical Sciences. Society for Industrial and Applied Mathematics, Philadelphia (1994)

    Book  MATH  Google Scholar 

  8. Bokanowski, O., Garcke, J., Griebel, M., Klompmaker, I.: An adaptive sparse grid semi-Lagrangian scheme for first order Hamilton-Jacobi Bellman equations. J. Sci. Comput. 55, 575–605 (2012)

    Article  MathSciNet  Google Scholar 

  9. Braess, D.: Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  10. Bramble, J., Pasciak, J., Xu, J.: Parallel multilevel preconditioners. Math. Comput. 55(191), 1–22 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brandt, A., Livne, O.: Multigrid techniques: 1984 guide with applications to fluid dynamics. In: Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (2011)

    Book  Google Scholar 

  12. Bungartz, H.: An adaptive Poisson solver using hierarchical bases and sparse grids in iterative methods in linear algebra. In: de Groen, P., Beauwens, R. (eds.) Proceedings of the IMACS International Symposium, 2.-4. 4. 1991, pp. 293–310, Brussels. Elsevier, Amsterdam (1992)

    Google Scholar 

  13. Bungartz, H.: Dünne Gitter und deren Anwendung bei der adaptiven Lösung der dreidimensionalen Poisson-Gleichung. Dissertation, Fakultät für Informatik, Technische Universität München (1992)

    Google Scholar 

  14. Bungartz, H., Griebel, M.: A note on the complexity of solving Poisson’s equation for spaces of bounded mixed derivatives. J. Complex. 15, 167–199 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bungartz, H., Griebel, M.: Sparse grids. Acta Numer. 13, 1–123 (2004)

    Article  MathSciNet  Google Scholar 

  16. Chegini, N., Stevenson, R.: The adaptive tensor product wavelet scheme: sparse matrices and the application to singularly perturbed problems. IMA J. Numer. Anal. 32(1), 75–104 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cioranescu, D., Damlamian, A., Griso, G.: Periodic unfolding and homogenization. Comptes Rendus Mathematique 335(1), 99–104 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cohen, A., DeVore, R., Schwab, C.: Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs. Anal. Appl. 9, 11–47 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dahmen, W.: Stability of multiscale transformations. J. Fourier Anal. Appl. 2, 341–361 (1996)

    MathSciNet  MATH  Google Scholar 

  20. Dahmen, W., Micchelli, C.: Using the refinement equation for evaluating integrals of wavelets. SIAM J. Numer. Anal. 30(2), 507–537 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Feuersänger, C.: Dünngitterverfahren für hochdimensionale elliptische partielle Differentialgleichungen. Diplomarbeit, Institut für Numerische Simulation, Universität Bonn (2005)

    Google Scholar 

  22. Feuersänger, C.: Sparse grid methods for higher dimensional approximation. Dissertation, Institut für Numerische Simulation, Universität Bonn (2010)

    Google Scholar 

  23. Garcke, J.: Maschinelles Lernen durch Funktionsrekonstruktion mit verallgemeinerten dünnen Gittern. Doktorarbeit, Institut für Numerische Simulation, Universität Bonn (2004)

    Google Scholar 

  24. Garcke, J., Griebel, M., Thess, M.: Data mining with sparse grids. Computing 67(3), 225–253 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gerstner, T., Griebel, M.: Dimension-adaptive tensor-product quadrature. Computing 71(1), 65–87 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Girosi, F., Jones, M., Poggio, T.: Regularization theory and neural networks architectures. Neural Comput. 7, 219–269 (1995)

    Article  Google Scholar 

  27. Griebel, M.: Multilevel algorithms considered as iterative methods on semidefinite systems. SIAM Int. J. Sci. Stat. Comput. 15(3), 547–565 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  28. Griebel, M.: Multilevelmethoden als Iterationsverfahren über Erzeugendensystemen. Teubner Skripten zur Numerik. Teubner, Stuttgart (1994)

    Book  MATH  Google Scholar 

  29. Griebel, M.: Sparse grids and related approximation schemes for higher dimensional problems. In: Pardo, L., Pinkus, A., Suli, E., Todd, M.J. (eds.) Foundations of Computational Mathematics (FoCM05), Santander, pp. 106–161. Cambridge University Press, Cambridge (2006)

    Chapter  Google Scholar 

  30. Griebel, M., Knapek, S.: Optimized tensor-product approximation spaces. Constr. Approx. 16(4), 525–540 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Griebel, M., Knapek, S.: Optimized general sparse grid approximation spaces for operator equations. Math. Comput. 78(268), 2223–2257 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Griebel, M., Oswald, P.: On additive Schwarz preconditioners for sparse grid discretizations. Numer. Math. 66, 449–464 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  33. Griebel, M., Oswald, P.: Tensor product type subspace splitting and multilevel iterative methods for anisotropic problems. Adv. Comput. Math. 4, 171–206 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hackbusch, W.: Multi-grid Methods and Applications. Springer Series in Computational Mathematics. Springer, Berlin/New York (1985)

    Book  MATH  Google Scholar 

  35. Hamaekers, J.: Tensor Product multiscale many–particle spaces with finite–order weights for the electronic schödinger equation. Dissertation, Institut für Numerische Simulation, Universität Bonn (2009)

    Google Scholar 

  36. Harbrecht, H., Schneider, R., Schwab, C.: Sparse second moment analysis for elliptic problems in stochastic domains. Numer. Math. 109, 385–414 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hegland, M.: Adaptive sparse grids. In: Burrage, K., Roger, B., Sidje, (eds.) Proceedings of 10th Computational Techniques and Applications Conference CTAC-2001, Brisbane, vol. 44, pp. C335–C353. (2003)

    MathSciNet  Google Scholar 

  38. Hoang, V., Schwab, C.: High-dimensional finite elements for elliptic problems with multiple scales. Multiscale Model. Simul. 3(1), 168–194 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Jakeman, J., Roberts, S.: Stochastic Galerkin and collocation methods for quantifying uncertainty in differential equations: a review. ANZIAM J. 50(C), C815–C830 (2008)

    Google Scholar 

  40. Knapek, S.: Approximation und Kompression mit Tensorprodukt-Multiskalenräumen. Doktorarbeit, Universität Bonn (2000)

    Google Scholar 

  41. Kwok, Y.: Mathematical Models of Financial Derivatives. Springer Finance. Springer, London (2008)

    MATH  Google Scholar 

  42. Maître, O., Knio, O.: Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics. Scientific Computation. Springer, New York (2010)

    Book  Google Scholar 

  43. Matache, A.: Sparse two-scale FEM for homogenization problems. J. Sci. Comput. 17, 659–669 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  44. Messiah, A.: Quantum Mechanics. North-Holland, Amsterdam (1965)

    Google Scholar 

  45. Mitzlaff, U.: Diffusionsapproximation von Warteschlangensystemen. Doktorarbeit, TU Clausthal (1997)

    MATH  Google Scholar 

  46. Munos, R.: A study of reinforcement learning in the continuous case by the means of viscosity solutions. Mach. Learn. 40(3), 265–299 (2000)

    Article  MATH  Google Scholar 

  47. Nobile, F., Tempone, R., Webster, C.: An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2411–2442 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  48. Nobile, F., Tempone, R., Webster, C.: A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2309–2345 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  49. Oswald, P.: On discrete norm estimates related to multilevel preconditioners in the finite element method. In: Proceedings of the International Conference on Constructive Theory of Functions, Varna 1991, pp. 203–214. Bulgarian Academy of Sciences, Sofia (1992)

    Google Scholar 

  50. Oswald, P.: Multilevel Finite Element Approximation: Theory and Applications. Teubner Skripten zur Numerik, Teubner (1994)

    Book  MATH  Google Scholar 

  51. Reisinger, C.: Numerische Methoden für hochdimensionale parabolische Gleichungen am Beispiel von Optionspreisaufgaben. Dissertation, Universität Heidelberg (2004)

    MATH  Google Scholar 

  52. Schölkopf, B., Smola, A.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT, Cambridge (2001)

    Google Scholar 

  53. Shen, X., Chen, H., Dai, J., Dai, W.: The finite element method for computing the stationary distribution of an SRBM in a hypercube with applications to finite buffer queueing networks. Queueing Syst. Theory Appl. 42(1), 33–62 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  54. Sjöberg, P.: Partial approximation of the master equation by the Fokker–Planck equation. In: Kagström, B., Elmroth, E., Dongarra, J., Waśniewski, J. (eds.) Applied Parallel Computing. State of the Art in Scientific Computing. Volume 4699 of Lecture Notes in Computer Science, pp. 637–646. Springer, Berlin/Heidelberg (2007)

    Chapter  Google Scholar 

  55. Sjöberg, P., Lötstedt, P., Elf, J.: Fokker–Planck approximation of the master equation in molecular biology. Comput. Vis. Sci. 12, 37–50 (2009)

    Article  MathSciNet  Google Scholar 

  56. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction (Adaptive Computation and Machine Learning). MIT, Cambridge (1998)

    Google Scholar 

  57. Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34(4), 581–613 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  58. Yserentant, H.: Old and new convergence proofs for multigrid methods. Acta Numer. 2, 285–326 (1993)

    Article  MathSciNet  Google Scholar 

  59. Zeiser, A.: Fast matrix-vector multiplication in the sparse-grid Galerkin method. J. Sci. Comput. 47(3), 328–346 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Hullmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Griebel, M., Hullmann, A. (2014). On a Multilevel Preconditioner and its Condition Numbers for the Discretized Laplacian on Full and Sparse Grids in Higher Dimensions. In: Griebel, M. (eds) Singular Phenomena and Scaling in Mathematical Models. Springer, Cham. https://doi.org/10.1007/978-3-319-00786-1_12

Download citation

Publish with us

Policies and ethics