Skip to main content

Rapid Patterning of Low-Viscosity Resists Using Electrohydrodynamic Lithography

  • Chapter
  • First Online:
Electrohydrodynamic Patterning of Functional Materials

Part of the book series: Springer Theses ((Springer Theses))

  • 575 Accesses

Abstract

Lithography is a constantly developing field, that is essential for many advanced technologies. Establishing the ability to pattern materials with high fidelity and resolution without compromising their properties is therefore important. The rapid pace of technological advancements triggers continual developments of cost effective lithographic schemes which eventually will enable the fabrication of a broad spectrum of structures in a controlled manner within extremely short periods of time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schaffer, E., Thurn-Albrecht, T., Russell, T. P., & Steiner, U. (2000). Electrically induced structure formation and pattern transfer. Nature, 403(6772), 874–877.

    Article  CAS  Google Scholar 

  2. Schaffer, E., Thurn-Albrecht, T., Russell, T. P., & Steiner, U. (2001). Electrohydrodynamic instabilities in polymer films. Europhysics Letters, 53(4), 518–524.

    Article  CAS  Google Scholar 

  3. Ning, Wu, & William, B. Russel. (2009). Micro- and nano-patterns created via electrohydrodynamic instabilities. Nano Today, 4(2), 180–192.

    Article  Google Scholar 

  4. Swan, J. W. (1897). Stress and other effects produced in resin and in a viscid compound of resin and oil by electrification. Proceedings of the Royal Society, 62, 38–46.

    Article  Google Scholar 

  5. Tonks, L. (1935). A theory of liquid surface rupture by a uniform electric field. Physical Review, 48, 562–568.

    Article  Google Scholar 

  6. Frenkel, J. (1935). On tonks theory of liquid surface rupture by a uniform electric filed. Physikalische zeitschrift der Sowjetunion, 8, 675–679.

    Google Scholar 

  7. Heier, J., Groenewold, J., & Steiner, U. (2009). Pattern formation in thin polymer films by spatially modulated electric fields. Soft Matter, 5, 3997–4005.

    Article  CAS  Google Scholar 

  8. Voicu, N. E., Ludwigs, S., & Steiner, U. (2008). Alignment of lamellar block copolymers via electrohydrodynamic-driven micropatterning. Advanced Materials, 20(16), 3022–3027.

    Article  CAS  Google Scholar 

  9. Leach, K. A., Lin, Z. Q., & Russell, T. P. (Jan 2005). Early stages in the growth of electric field-induced surface fluctuations. Macromolecules, 38(11), 4868–4873.

    Article  Google Scholar 

  10. Dickey, M. D., Collister, E., Raines, A., Tsiartas, P., Holcombe, T., Sreenivasan, S. V., et al. (2006). Photocurable pillar arrays formed via electrohydrodynamic instabilities. Chemistry of Materials, 18(8), 2043–2049.

    Article  CAS  Google Scholar 

  11. Melcher, J. R. (1963). Field-coupled surface waves. Cambridge: MIT Press.

    Google Scholar 

  12. Vrij, A. (1966). Discussions of the Faraday Society, 42, 23.

    Article  Google Scholar 

  13. Wyart, F. B., Martin, P., & Redon, C. (1993). Liquid-liquid dewetting. Langmuir, 9(12), 3682–3690.

    Article  CAS  Google Scholar 

  14. Pease, L. F., & Russel, W. B. (2003). Electrostatically induced submicron patterning of thin perfect and leaky dielectric films: A generalized linear stability analysis. Journal of Chemical Physics, 118(8), 3790–3803.

    Article  CAS  Google Scholar 

  15. Pease, L. F., & Russel, W. B. (2004). Limitations on length scales for electrostatically induced submicrometer pillars and holes. Langmuir, 20(3), 795–804.

    Article  CAS  Google Scholar 

  16. Alexander, Oron, Stephen, H. Davis, & George Bankoff, S. (1997). Long-scale evolution of thin liquid films. Reviews of Modern Physics, 69(3), 931–980.

    Article  Google Scholar 

  17. Schaffer, E. (2001). Instabilities in thin polymer films: structure formation and pattern transfer. Ph.D. thesis. Retrived from http://www.ub.uni-konstanz.de/kops/volltexte/2002/779/.

  18. Harkema, S. (2006). Capillary instabilities in thin polymer films. Ph.D. thesis. Retrived from http://irs.ub.rug.nl/ppn/291147801.

  19. Harkema, S., & Steiner, U. (2005). Hierarchical pattern formation in thin polymer films using an electric field and vapor sorption. Advanced Functional Materials, 15(12), 2016–2020.

    Article  CAS  Google Scholar 

  20. Morariu, M. D., Voicu, N. E., Schaffer, E., Lin, Z. Q., Russell, T. P., & Steiner, U. (2003). Hierarchical structure formation and pattern replication induced by an electric field. Nature Materials, 2(1), 48–52.

    Article  CAS  Google Scholar 

  21. Voicu, N. E., Harkema, S., & Steiner, U. (2006). Electric-field-induced pattern morphologies in thin liquid films. Advanced Functional Materials, 16(7), 926–934.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pola Goldberg Oppenheimer .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Oppenheimer, P.G. (2013). Rapid Patterning of Low-Viscosity Resists Using Electrohydrodynamic Lithography. In: Electrohydrodynamic Patterning of Functional Materials. Springer Theses. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00783-0_4

Download citation

Publish with us

Policies and ethics