Skip to main content

Theoretical Background and Physical Principles of EHD Instabilities

  • Chapter
  • First Online:
Electrohydrodynamic Patterning of Functional Materials

Part of the book series: Springer Theses ((Springer Theses))

  • 601 Accesses

Abstract

The availability of materials has been of a considerable impact on the human development over many centuries. Ever since the Stone age, through the Bronze and Iron ages and to the current age emerging as a “Polymer age”, humans have been constantly surrounded by polymers wherever they might be. The naturally occurring biopolymers, the DNA, the proteins and starches in foods, the tires on our bikes and cars, cotton, wool and rubber, are only a number of examples of polymers, which are supreme in their diversity and properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ruckenst, E., & Jain, R. K. (1974). Spontaneous rupture of thin liquid-films. Journal of the Chemical Society-Faraday Transactions II, 70, 132–147.

    Article  Google Scholar 

  2. Verma, R., Sharma, A., Kargupta, K., & Bhaumik, J. (2005). Electric field induced instability and pattern formation in thin liquid films. Langmuir, 21(8), 3710–3721.

    Article  CAS  Google Scholar 

  3. Wyart, F. B., Martin, P., & Redon, C. (1993). Liquid–liquid dewetting. Langmuir, 9(12), 3682–3690.

    Article  CAS  Google Scholar 

  4. Bischof, J., Scherer, D., Herminghaus, S., & Leiderer, P. (1996). Dewetting modes of thin metallic films: Nucleation of holes and spinodal dewetting. Physical Review Letters, 77(8), 1536–1539.

    Article  CAS  Google Scholar 

  5. Higgins, A. M., & Jones, R. A. L. (2000). Anisotropic spinodal dewetting as a route to self-assembly of patterned surfaces. Nature, 404(6777), 476–478.

    Article  CAS  Google Scholar 

  6. Schaffer, E. (2001). Instabilities in thin polymer films: structure formation and pattern transfer. Ph.D. thesis. http://www.ub.uni-konstanz.de/kops/volltexte/2002/779/.

  7. Schaffer, E., Harkema, S., Roerdink, M., Blossey, R., & Steiner, U. (2003). Thermomechanical lithography: pattern replication using a temperature gradient driven instability. Advanced Materials, 15(6), 514–517.

    Article  CAS  Google Scholar 

  8. Seemann, R., Herminghaus, S., & Jacobs, K. (2001). Dewetting patterns and molecular forces: a reconciliation. Physical Review Letters, 86(24), 5534–5537.

    Article  CAS  Google Scholar 

  9. Landau, L. D., & Lifshitz, E. M. (1959). Fluid mechanics. London: Pergamon Press.

    Google Scholar 

  10. Oron, A., Davis, S. H., & George Bankoff, S. (1997). Long-scale evolution of thin liquid films. Reviews of Modern Physics, 69(3), 931–980.

    Article  CAS  Google Scholar 

  11. Tabor, D., & Winterton, R. H. S. (1969). The direct measurement of normal and retarded van der waals forces. Proceding of the Royal Society A, 312, 435–450.

    Article  CAS  Google Scholar 

  12. Lin, Z. Q., Kerle, T., Baker, S. M., Hoagland, D. A., Schaffer, E., Steiner, U., et al. (2001). Electric field induced instabilities at liquid/liquid interfaces. Journal of Chemical Physics, 114(5), 2377–2381.

    Article  CAS  Google Scholar 

  13. Schaffer, E., Thurn-Albrecht, T., Russell, T. P., & Steiner, U. (2001). Electrohydrodynamic instabilities in polymer films. Europhysics Letters, 53(4), 518–524.

    Article  CAS  Google Scholar 

  14. Schaffer, E., Thurn-Albrecht, T., Russell, T. P., & Steiner, U. (2000). Electrically induced structure formation and pattern transfer. Nature, 403(6772), 874–877.

    Article  CAS  Google Scholar 

  15. Pease, L. F., & Russel, W. B. (2003). Electrostatically induced submicron patterning of thin perfect and leaky dielectric films: a generalized linear stability analysis. Journal of Chemical Physics, 118(8), 3790–3803.

    Article  CAS  Google Scholar 

  16. Pease, L. F., & Russel, W. B. (2002). Linear stability analysis of thin leaky dielectric films subjected to electric fields. Journal of Non-Newtonian Fluid Mechanics, 102(2), 233–250.

    Article  CAS  Google Scholar 

  17. Harkema, S. (2006). Capillary instabilities in thin polymer films. Ph.D. thesis. http://irs.ub.rug.nl/ppn/291147801.

  18. Swan, J. W. (1897). Stress and other effects produced in resin and in a viscid compound of resin and oil by electrification. Proceedings of the Royal Society, 62, 38–46.

    Article  Google Scholar 

  19. Frenkel, J. (1935). On tonks theory of liquid surface rupture by a uniform electric filed. Physikalische zeitschrift der Sowjetunion, 8, 675–679.

    Google Scholar 

  20. Tonks, L. (1935). A theory of liquid surface rupture by a uniform electric field. Physical Review, 48, 562–568.

    Article  Google Scholar 

  21. Melcher, J. R. (1963). Field-coupled surface waves. Cambridge: MIT Press.

    Google Scholar 

  22. Melcher, J. R. (1961). Electrohydrodynamic and magnetohydrodynamic surface waves and instabilities. Physics of Fluids, 4, 1348–1354.

    Article  Google Scholar 

  23. Reynolds, M. (1965). Stability of electrostatically supported fluid column. Physics of Fluids, 8, 161–170.

    Article  Google Scholar 

  24. Taylor, G. I., & Mcewan, A. D. (1965). The stability of horizontal fluid interface in a vertical electric field. The Journal of Fluid Mechanics, 22, 1–15.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pola Goldberg Oppenheimer .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Oppenheimer, P.G. (2013). Theoretical Background and Physical Principles of EHD Instabilities. In: Electrohydrodynamic Patterning of Functional Materials. Springer Theses. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00783-0_2

Download citation

Publish with us

Policies and ethics