Skip to main content

Molecular Interactions on InxGa1−xN

  • Conference paper
  • First Online:
MEMS and Nanotechnology, Volume 5

Abstract

Atomic force microscopy in solution offers a platform for assessing interactions on chemically modified surfaces. In this study a biologically relevant molecule, an amino acid, is adsorbed onto a compositionally varied semiconductor substrate. AFM is used to assess the effect of the substrate composition on the adhesion of the amino acid. We report adsorption of L-arginine to an indium-gallium-nitride (InGaN) substrate with a gradient of In:Ga composition. Data are collected above and below the isoelectric point of arginine to highlight the effect of protonation on the adhesive behavior across the InGaN. Characterization is also performed using X-ray photoelectron spectroscopy to establish the presence of amino acid on the surface and determine the general composition of a given region of the substrate both with and without amino acid. Combining these factors, we are able to better evaluate the significance of substrate properties in influencing the behavior of surface molecules. Determining the dynamics of amino acid behavior as a function of both the substrate and the environment provides new insight into the preparation of semiconductor materials for biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davis RF (1991) III-V nitrides for electronic and optoelectronic applications. Proc IEEE 79(5):702–712

    Article  Google Scholar 

  2. Ponce FA, Bour DP (1997) Nitride-based semiconductors for blue and green light-emitting devices. Nature 386:351–359

    Article  Google Scholar 

  3. Jewett SA, Makowski MS, Andrews B, Manfra MJ, Ivanisevic A (2012) Gallium nitride is biocompatible and non-toxic before and after functionalization with peptides. Acta Biomater 8:728–733

    Article  Google Scholar 

  4. Gupta S, Elias M, Wen X, Shapiro J, Brillson L, Lu W, Lee SC (2008) Detection of clinically relevant levels of protein analyte under physiologic buffer using planar field effect transistors. Biosens Bioelectron 24(4):505–511

    Article  Google Scholar 

  5. Chin VWL, Tansley TL, Osotchan T (1994) Electron mobilities in gallium indium, and aluminum nitrides. J Appl Phys 75(11):7365–7372

    Article  Google Scholar 

  6. Kuykendall T, Ulrich P, Aloni S, Yang P (2007) Complete composition tenability of InGaN nanowires using a combinatorial approach. Nat Mater 6:951–956

    Article  Google Scholar 

  7. Cimalla I, Will F, Tonisch K, Niebelschütz M, Cimalla V, Lebedev V, Kittler G, Himmerlich M, Krischok S, Schaefer JA, Gebinoga M, Schober A, Friedrich T, Ambacher O (2007) AlGaN/GaN biosensor – effect of device processing steps on the surface properties and biocompatibility. Sens Actuators B 123:740–748

    Article  Google Scholar 

  8. Chaniotakis N, Sofikiti N (2008) Novel semiconductor materials for the development of chemical sensors and biosensors: a review. Anal Chim Acta 615:1–9

    Article  Google Scholar 

  9. Slavin JWJ, Jarori U, Zemlyanov D, Ivanisevic A (2009) Characterization of amino acid adlayers on InAs surfaces using X-ray photoelectron spectroscopy. J Electron Spectrosc Relat Phenom 172:47–53

    Article  Google Scholar 

  10. Slavin JWJ, Zemlyanov D, Ivanisevic A (2009) Adsorption of amino acids on indium arsenide (100) surfaces: assessment of passivation capabilities. Surf Sci 603:907–911

    Article  Google Scholar 

  11. Makowski MS, Ivanisevic A (2001) Molecular analysis of blood with micro-/nanoscale field-effect-transistor biosensors. Small 7(14):1863–1875

    Article  Google Scholar 

  12. César M, Ke Y, Ji W, Guo H, Mi Z (2011) Band gap of InxGa1−xN: a first principles analysis. Appl Phys Lett 98:202107–202109

    Article  Google Scholar 

  13. Chen Z, Su LW, Shi JY, Wang XL, Tang CL, Gao P (2012) AFM application in III-nitride materials and devices. In Bellitto V (ed) Atomic force microscopy – imaging, measuring, and manipulating surfaces at the atomic scale. InTech, pp 189–208

    Google Scholar 

  14. Goede K, Grundmann M, Holland-Nell K, Beck-Sickinger AG (2006) Cluster properties of peptides on (100) semiconductor surfaces. Langmuir 22:8104–8108

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. E. Bain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Society for Experimental Mechanics

About this paper

Cite this paper

Bain, L.E., Hosalli, A.M., Bedair, S.M., Paskova, T., Ivanisevic, A. (2014). Molecular Interactions on InxGa1−xN. In: Shaw III, G., Prorok, B., Starman, L., Furlong, C. (eds) MEMS and Nanotechnology, Volume 5. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-00780-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00780-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-00779-3

  • Online ISBN: 978-3-319-00780-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics