Skip to main content

Quantitative Visualization of High-Rate Material Response with Dynamic Proton Radiography

  • Conference paper
  • First Online:
  • 2512 Accesses

Abstract

Proton Radiography or pRad was invented at Los Alamos National laboratory employing a very high-energy proton beam to acquire up to 37 images of dynamic experiments often driven by high explosives (HE). The high energy of the beam from the Los Alamos Neutron Science Center’s 800-mega-electron-volt (MeV) proton linear accelerator (LINAC) provides penetrating power sufficient to resolve fine details (~65 μm resolution) in materials and structures under extreme conditions that are difficult to discern with other techniques. Three experiments utilizing pRAD to quantitative visualize the dynamic response of materials are presented. High strain-rate (107 s−1) strength measurements are performed by visualizing a Rayleigh-Taylor unstable interface driven by HE products with pRAD tied to material pedigree, processing and phase changes. High-explosive driven ejecta experiments probing the Richtmyer-Meshkov instability in metals employ pRAD’s ability to visualize the nuances of unstable spike growth with complementary diagnostics. Experiments impacting and penetrating glass probe the anomalous material response and Equation-of-State under a complex three-dimensional loading using both pRAD’s ability to visualize and determine material density. In all three experiments proton radiography provides temporal and spatial visualization of dynamic material deformation and the ability to make in situ measurement of material state.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gavron A, Morris CL, Ziock HJ, Zombro JD (1996) Proton radiography, Los Alamos national laboratory report LA-UR-96-420

    Google Scholar 

  2. Lisowski PW, Schoenberg KF (2006) The Los Alamos Neutron Science Center. Nucl Instrum Methods Phys Res A 562:910

    Article  Google Scholar 

  3. Mariam FG, Merrill FE, Espinoza CJ, Heidemann JA, Hollander BJ, Kwiatkowski KK, Lopez JD, Lopez RP, Marr-Lyon M, McNeil WV, Morley DJ, Morris C, Murray MM, Nedrow P, Perry JO, Saunders A, Tainter AM, Trouw FR, Tupa D (2012) Proton radiography: its uses and resolution scaling. In: Grim GP, Barber HB (eds) Penetrating radiation systems and applications XIII. Proceedings of SPIE – the international society for optical engineering, vol 8509, 850904. doi: 10.1117/12.930569

  4. Merrill FE (2008) and the pRad collaboration Proton Radiography Primer. http://lansce.lanl.gov/pRad/docs/pRad_Primer2.pdf

  5. Merrill FE, Campos E, Espinoza C, Hogan G, Hollander B, Lopez J, Mariam FG, Morley D, Morris CL, Murray M, Saunders A, Schwartz C, Thompson TN (2011) Magnifying lens for 800 MeV proton radiography. Rev Sci Instrum 82:103709

    Article  Google Scholar 

  6. Holtkamp DB, Clark DA, Ferm EN, Gallegos RA, Hammon D, Hemsing WF, Hogan GE, Holmes VH, King NSP, Liljestrand R, Lopez RP, Merrill FE, Morris CL, Morley KB, Murray MM, Pazuchanics PD, Prestridge KP, Quintana JP, Saunders A, Schafer T, Shinas MA, Stacy HL (2004) A survey of high explosive-induced damage and spall in selected metals using proton radiography. In: Furnish MD, Gupta YM, Forbes JW (eds) Shock compression of condensed matter – 2003: proceedings of the conference of the American physical society topical group on shock compression of condensed matter. AIP conference proceedings, vol 706, p 477. doi:http://dx.doi.org/10.1063/1.1780281

  7. Schwartz CL, Hogan GE, Kwiatkowski K, Rigg PA, Rightley PM, Mariam FG, Marr-Lyon M, Merrill FE, Morris CL, Saunders A, Tupa D (2007) New capabilities of 800 MeV proton radiography at Los Alamos. In: Elert M, Furnish MD, Chau R, Holmes N, Nguyen J (eds).Shock compression of condensed matter – 2007: proceedings of the conference of the American physical society topical group on shock compression of condensed matter. AIP conference proceedings, vol 955, p 1135. doi:http://dx.doi.org/10.1063/1.2832918

  8. Rigg PA, Schwartz CL, Hixson RS, Hogan GE, Kwiatkowski KK, Mariam FG, Marr-Lyon M, Merrill FE, Morris CL, Rightly P, Saunders A, Tupa D (2008) Proton radiography and accurate density measurements: a window into shock wave processes. Phys Rev B 77:220101(R)

    Article  Google Scholar 

  9. Oró DM, Hammerberg JE, Buttler WT, Mariam FG, Morris C, Rousculp C, Stone JB (2012) A class of ejecta transport test problems. In: Elert ML, Buttler WT, Borg JP, Jordan JL, Vogler TJ (eds) Shock compression of condensed matter – 2011: proceedings of the conference of the American physical society topical group on shock compression of condensed matter. AIP conference proceedings, vol 1426, p 1351. doi: 10.1063/1.3686531

  10. Ferm EN, Morris CL, Quintana JP, Pazuchanic P, Stacy H, Zumbro JD, Hogan G, King N (eds) Proton radiography examination of unburned regions in PBX 9502 corner turning experiments. In: Furnish MD, Thadhani NN, Horie Y (eds) Shock compression of condensed matter – 2001: 12th APS topical conference. AIP conference proceedings, vol 620, p 966. doi:http://dx.doi.org/10.1063/1.1483699

  11. Aslam TD, Scott I, Jackson SI, John S, Morris JS (2009) Proton radiography of PBX 9502 detonation shock dynamics confinement sandwich test. In: Elert ML, Buttler WT, Furnish MD, Anderson WW, Proud WG (eds) Shock compression of condensed matter 2009: proceedings of the American physical society topical group on shock compression of condensed matter. AIP conference proceedings, vol 1195, p 241. doi:http://dx.doi.org/10.1063/1.3295113

  12. Smilowitz L, Henson BF, Romero JJ, Asay BW, Schwartz CL, Saunders A, Merrill FE, Morris CL, Kwiatkowski K, Hogan G, Nedrow P, Murray MM, Thompson TN, McNeil W, Rightley P, Marr-Lyon M (2008) Direct observation of the phenomenology of a solid thermal explosion using time-resolved proton radiography. Phys Rev Lett 100:228301

    Article  Google Scholar 

  13. Smilowitz L, Henson BF, Romero JJ, Asay BW, Saunders A, Merrill FE, Morris CL, Kwiatkowski K, Grim G, Mariam F, Schwartz CL, Hogan G, Nedrow P, Murray MM, Thompson TN, Espinoza C, Lewis D, Bainbridge J, McNeil W, Rightley P, Marr-Lyon M (2012) The evolution of solid density within a thermal explosion. I. Proton radiography of pre-ignition expansion, material motion, and chemical decomposition. J Appl Phys 111:103515

    Article  Google Scholar 

  14. Rousculp CL, Reass WA, Oro DM, Turchi PJ, Hollander BJ, Griego JR, Reinovsky RE (2011) The phelix pulsed power project: bringing portable magnetic drive to world class radiography. In: IEEE pulsed power conference, p 1067. doi 10.1109/PPC.2011.6191644

  15. Clarke A, Imhoff S, Gibbs P, Cooley J, Morris C, Merrill F, Hollander B, Mariam F, Ott T, Barker M, Tucker T, Lee W-K, Fezzaa K, Deriy A, Patterson B, Clarke K, Montalvo J, Field R, Thoma D, Smith J, Teter D (2013) Proton radiography peers into metal solidification. Scient Reports 3:2020. doi:10.1038/srep02020

  16. Steinberg DJ, Cochran SG, Guinan MW (1980) A constitutive model for metals applicable at high‐strain rate. J Appl Phys 51:1498

    Article  Google Scholar 

  17. Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: The proceedings of the 7th international symposium on ballistics, The Hague, Apr 1983

    Google Scholar 

  18. Preston DL, Tonks DL, Wallace DC (2003) Model of plastic deformation for extreme loading conditions. J Appl Phys 39:211

    Article  Google Scholar 

  19. Zerilli FJ, Armstrong RW (1987) Dislocation‐mechanics‐based constitutive relations for material dynamics calculations. J Appl Phys 61:1816

    Article  Google Scholar 

  20. Follansbee PS, Kocks UF (1988) A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable. Acta Metall 36:81

    Article  Google Scholar 

  21. Barnes JF, Blewett PJ, McQueen RG, Meyer KA, Venable D (1974) Taylor instability in solids. J Appl Phys 45:727

    Article  Google Scholar 

  22. Belof JL, Cavallo RM, Olson RT, King RS, Gray GT III, Holtkamp DB, Chen S-R, Rudd RE, Barton NR, Arsenlis A, Remington BA, Park H-S, Prisbrey ST, Vitello PA, Bazan G, Mikaelian KO, Comley AJ, Maddox BR, May MJ (2012) Rayleigh-Taylor strength experiments of the pressure-induced α→ε→α’ phase transition in iron. In: Elert ML, Buttler WT, Borg JP, Jordan JL, Vogler TJ (eds) Shock compression of condensed matter – 2011: proceedings of the conference of the American Physical Society topical group on shock compression of condensed matter. AIP conference proceedings, vol 1426, p 1521. doi:10.1063/1.3686572

  23. Buttler WT, Oro DM, Preston DL, Mikaelian KO, Cherne FJ, Hixson RS, Mariam FG, Morris C, Stone JB, Terrones G, Tupa D (2012) Unstable Richtmyer-Meshkov growth of solid and liquid metals in vacuum. J Fluid Mech 703:60–84

    Article  MATH  Google Scholar 

  24. Piriz AR, Lopez-Cela JJ, Tahir NA, Hoffmann DHH (2008) Richtmyer-Meshkov instability in elastic–plastic media. Phys Rev E 78:056401

    Article  Google Scholar 

  25. Preston DL, Tonks DL, Wallace DC (2003) Model of plastic deformations for extreme loading conditions. J Appl Phys 93:211–220

    Article  Google Scholar 

Download references

Acknowledgements

Los Alamos National Laboratory is operated by LANS, LLC, for the NNSA of the US Department of Energy under contract DE-AC52-06NA25396. M.B. Zellner and D.P. Dandekar wish to acknowledge collaborations with R. Becker, D. Kleponis, P. Patel, J. Runyeon, and T. Bjerke at ARL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Brown, E.N. et al. (2014). Quantitative Visualization of High-Rate Material Response with Dynamic Proton Radiography. In: Song, B., Casem, D., Kimberley, J. (eds) Dynamic Behavior of Materials, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-00771-7_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00771-7_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-00770-0

  • Online ISBN: 978-3-319-00771-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics