Skip to main content

Observation of the Microstructural Evolution in a Structural Polymeric Foam Using Incremental Digital Volume Correlation

  • Conference paper
  • First Online:
Advancement of Optical Methods in Experimental Mechanics, Volume 3

Abstract

Polymeric structural foams are widely used in many engineering applications due to their exceptional properties including high specific strength and energy absorption. The mechanical properties depend strongly on their microstructures, which also dictate their load-bearing capability under deformation. However, the mechanical behavior of polymer foams in compression is not well understood, due to the complex local deformation and strain characteristics associated with the cellular microstructure. In this paper, unconfined uniaxial compression of a polymeric structural foam was conducted while its microstructure was determined using micro-computed tomography (micro-CT) subjected to large deformations. The detailed local deformations and strains are obtained by using three dimensional digital volume correlations (DVC) method. This incremental DVC allows the use of intermediate bridging images to determine large nonlinear deformations in the foam under compression. The evolution and deformation mechanism of the microstructure are observed during different compression stages using the incremental DVC techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arezoo S, Tagarielli VL, Siviour CR, Petrinic N (2013) Compressive deformation of rohacell foams: effects of strain rate and temperature. Int J Impact Eng 51:50–57

    Article  Google Scholar 

  2. Daphalapurkar N, Hanan J, Phelps N, Bale H, Lu H (2008) Tomography and simulation of microstructure evolution of a closed-cell polymer foam in compression. Mech Adv Mater Struct 15(8):594–611

    Article  Google Scholar 

  3. Flores-Johnson EA, Li QM, Mines RAW (2008) Degradation of elastic modulus of progressively crushable foams in uniaxial compression. J Cell Plast 44(5):415–434

    Article  Google Scholar 

  4. Zenkert D, Shipsha A, Burman M (2006) Fatigue of closed cell foams. J Sandwich Struct Mater 8(6):517–538

    Article  Google Scholar 

  5. Zenkert D, Burman M (2009) Tension, compression and shear fatigue of a closed cell polymer foam. Composites Sci Technol 69(6):785–792

    Article  Google Scholar 

  6. Li QM, Mines RAW, Birch RS (2000) The crush behaviour of rohacell-51wf structural foam. Int J Solids Struct 37(43):6321–6341

    Article  MATH  Google Scholar 

  7. Arezoo S, Tagarielli VL, Petrinic N, Reed JM (2011) The mechanical response of rohacell foams at different length scales. J Mater Sci 46(21):6863–6870

    Article  Google Scholar 

  8. Babout L, Ludwig W, Maire E, Buffière JY (2003) Damage assessment in metallic structural materials using high resolution synchrotron X-Ray tomography. Nucl Instrum Methods Phys Res, Sect B 200:303–307

    Article  Google Scholar 

  9. Buffiere JY, Ferrie E, Proudhon H, Ludwig W (2006) Three-dimensional visualisation of fatigue cracks in metals using high resolution synchrotron X-Ray micro-tomography. Mater Sci Technol 22(9):1019–1024

    Article  Google Scholar 

  10. Dudek MA, Hunter L, Kranz S, Williams JJ, Lau SH, Chawla N (2010) Three-dimensional visualization of reflow porosity and modeling of deformation in Pb-free solder joints. Mater Charact 61(4):433–439

    Article  Google Scholar 

  11. Sassov A, Buelens E (2006) Micro-CT for polymers and composite materials. Functional Materials, vol 13. Wiley-VCH Verlag GmbH & Co. KGaA, Berlin, Germany

    Google Scholar 

  12. Patterson BM, Henderson K, Smith Z, Zhang D, Giguere P (2012) Applications of micro-CT to in-situ foam compression and numerical modeling. Microsc Anal, pp. S4–S7

    Google Scholar 

  13. Bay BK, Smith TS, Fyhrie DP, Saad M (1999) Digital volume correlation: three-dimensional strain mapping using X-Ray tomography. Exp Mech 39(3):217–226

    Article  Google Scholar 

  14. Zauel R, Yeni YN, Bay BK, Dong XN, Fyhrie DP (2006) Comparison of the linear finite element prediction of deformation and strain of human cancellous bone to 3D digital volume correlation measurements. J Biomech Eng-T ASME 128(1):1–6

    Article  Google Scholar 

  15. Liu L, Morgan EF (2007) Accuracy and precision of digital volume correlation in quantifying displacements and strains in trabecular bone. J Biomech 40(15):3516–3520

    Article  Google Scholar 

  16. Jirousek O, Jandejsek I, Vavrik D (2011) Evaluation of strain field in microstructures using micro-CT and digital volume correlation. J Instrum 6, C01039

    Article  Google Scholar 

  17. Maskarinec SA, Franck C, Tirrell DA, Ravichandran G (2009) Quantifying cellular traction forces in three dimensions. Proc Natl Acad Sci 106(52):22108

    Article  Google Scholar 

  18. Franck C, Hong S, Maskarinec SA, Tirrell DA, Ravichandran G (2007) Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital colume correlation. Exp Mech 47(3):427–438

    Article  Google Scholar 

  19. Forsberg F, Mooser R, Arnold M, Hack E, Wyss P (2008) 3D micro-scale deformations of wood in bending: synchrotron radiation mu CT data analyzed with digital volume vorrelation. J Struct Biol 164(3):255–262

    Article  Google Scholar 

  20. Germaneau A, Doumalin P, Dupre JC (2008) Comparison between X-Ray micro-computed tomography and optical scanning tomography for full 3D strain measurement by digital volume correlation. NDT E Int 41(6):407–415

    Article  Google Scholar 

  21. Forsberg F, Siviour CR (2009) 3D deformation and strain analysis in compacted sugar using X-Ray microtomography and digital volume correlation. Meas Sci Technol 20(9):095703

    Article  Google Scholar 

  22. Roux S, Hild F, Viot P, Bernard D (2008) Three-dimensional image correlation from X-Ray computed tomography of solid foam. Composites A-Appl Sci Manuf 39(8):1253–1265

    Article  Google Scholar 

  23. Rannou J, Limodin N, Réthoré J, Gravouil A, Ludwig W, Baïetto-Dubourg MC, Buffière JY, Combescure A, Hild F, Roux S (2010) Three dimensional experimental and numerical multiscale analysis of a fatigue crack. Comput Methods Appl Mech Eng 199(21–22):1307–1325

    Article  MATH  Google Scholar 

  24. Carroll J, Efstathiou C, Lambros J, Sehitoglu H, Hauber B, Spottswood S, Chona R (2009) Investigation of fatigue crack closure using multiscale image correlation experiments. Eng Fracture Mech 76(15):2384–2398

    Article  Google Scholar 

  25. Giachetti A (2000) Matching techniques to compute image motion. Image Vis Comput 18(3):247–260

    Article  Google Scholar 

  26. Hu Z, Luo H, Young W, Lu H (2012) Three-dimensional internal large deformation measurement of PMI foam using incremental digital volume correlation. Int Mech Eng Congress Exposition, Houston, USA

    Google Scholar 

  27. Open MPI: Open Source High Performance Computing (2012) http://www.open-mpi.org/

Download references

Acknowledgements

We acknowledge the support of DOE Nuclear Energy University Program (NEUP) grant number 09–416 and ONR Multidisciplinary University Research Initiative program (MURI) BAA 10–026. We also thank NSF CMMI-1031829, CMMI-1121174 and Beercherl Chair for additional support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbing Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Hu, Z., Luo, H., Lu, H. (2014). Observation of the Microstructural Evolution in a Structural Polymeric Foam Using Incremental Digital Volume Correlation. In: Jin, H., Sciammarella, C., Yoshida, S., Lamberti, L. (eds) Advancement of Optical Methods in Experimental Mechanics, Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-00768-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00768-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-00767-0

  • Online ISBN: 978-3-319-00768-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics