Advertisement

Gravitino Production at the LHC

  • Priscila de AquinoEmail author
Chapter
  • 701 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Supersymmetric theories can naturally solve the hierarchy problem, and at the same time, shed some light on different SM shortcomings, providing for example candidates suitable for being a dark matter particle. We start the chapter with a simple description of how quadratic divergences arise in the SM, and the possible solution for the hierarchy problem provided by Supersymmetric theories. We subsequently characterize such theories and describe some of its main branches. Finally, phenomenological analyses for the production of specific super-particles are exhibited.

Keywords

Gravitino Production Minimal Supersymmetric Standard Model (MSSM) Goldstino Gravitino Mass Gluino Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Djouadi, The anatomy of electro-weak symmetry breaking. II: the Higgs bosons in the minimal supersymmetric model. Phys. Rep. 459(1–6), 340 (2005, hep-ph/0503173)Google Scholar
  2. 2.
    M. Drees, An Introduction to Supersymmetry, Proceedings of Inauguration Conference of the Asia Pacific Center for Theretical Physics (APCTP), (1996, hep-ph/9611409)Google Scholar
  3. 3.
    A. Djouadi, The Higgs particles in the MSSM, Lectures given at “Ecole de GIF 2001”, 2001, http://ecole-de-gif.in2p3.fr/Cours/GIF01/djouadi.ps
  4. 4.
    S. Dawson, Introduction to Electroweak Symmetry Breaking, Proceedings of ICTP Summer School in High-Energy Physics and Cosmology 1998 (1998, hep-ph/9901280)Google Scholar
  5. 5.
    S. P. Martin, A Supersymmetry Primer, Kane, G.L. (ed). Perspectives on supersymmetry II, 1–153 (1997, hep-ph/9709356)Google Scholar
  6. 6.
    E. Witten, Dynamical breaking of supersymmetry. Nucl. Phys. B 185, 513–554 (1981)Google Scholar
  7. 7.
    P. Fayet, Mixing between gravitational and weak interactions through the massive gravitino. Phys. Lett. B70(4), 461–464 (1977)Google Scholar
  8. 8.
    P. Fayet, Scattering cross sections of the photino and the goldstino (gravitino) on matter. Phys. Lett. B 86(3–4), 272–278 (1979)Google Scholar
  9. 9.
    D. Freedman, P. van Nieuwenhuizen, S. Ferrara, Progress toward a theory of supergravity. Phys. Rev. D 13(12), 3214–3218 (1976)Google Scholar
  10. 10.
    D. Freedman, P. van Nieuwenhuizen, Properties of supergravity theory. Phys. Rev. D 14(4), 912–916 (1976)Google Scholar
  11. 11.
    E. Cremmer, S. Ferrara, L. Girardello, A. Van Proeyen, Yang-Mills theories with local supersymmetry: Lagrangian, transformation laws and super-Higgs effect. Nucl. Phys. B 212(3), 413–442 (1983)Google Scholar
  12. 12.
    J. Wess, J. Bagger, Supersymmetry and Supergravity. (Princeton University Press, New Jersey, 1992)Google Scholar
  13. 13.
    D.G. Cerdeno, C. Munoz, An Introduction to Supergravity. in JHEP Proceedings, 6th Corfu Hellenic School and Workshop on Elementary Particle. Physics 3, 1–27 (1998)Google Scholar
  14. 14.
    T. Moroi, Effects of the gravitino on the inflationary universe. PhD thesis, Tohoku University, hep-ph/9503210Google Scholar
  15. 15.
    T. Lee, G.-H. Wu, Interactions of a single goldstino. Phys. Lett. B 447(1–2), 10 (1998, hep-ph/9805512)Google Scholar
  16. 16.
    J. Pradler, Electroweak Contributions to Thermal Gravitino Production, Diploma Thesis, Institute for Theoretical Physics, University of Vienna and Max-Planck Institute for Physics, p. 101 (2007, 0708.2786)Google Scholar
  17. 17.
    K. Mawatari, Y. Takaesu, HELAS and MadGraph with goldstinos. Eur. Phys. J. C 71(6), 1–10 (2011)Google Scholar
  18. 18.
    M. Bolz, A. Brandenburg, W. Buchmuller, Thermal production of gravitinos. Nucl. Phys. B 606(1–2), 32 (2000, hep-ph/0012052)Google Scholar
  19. 19.
    S. Weinberg, The Quantum Theory of Fields: Volume 3,Supersymmetry: Supersymmetry v. 3. Cambridge University Press, 2005.Google Scholar
  20. 20.
    P. Fayet, Weak interactions of a light gravitino: a lower limit on the gravitino mass from the decay \(\psi \)Ggravitino + antiphotino. Phys. Lett. B 84(4), 421–426 (1979)Google Scholar
  21. 21.
    T.E. Clark, S.T. Love, Goldstino couplings to matter. Phys. Rev. D 54(9), 5723–5727 (1996)Google Scholar
  22. 22.
    K. Hagiwara, K. Mawatari, Y. Takaesu, HELAS and MadGraph with spin-3/2 particles. Eur Phys. J. C 71(1), 1–14 (2011)Google Scholar
  23. 23.
    J. Lopez, D. Nanopoulos, A. Zichichi, The simplest, string-derivable, supergravity model and its experimental predictions. Phys. Rev. D 49(1), 29 (1992, hep-ph/9210280)Google Scholar
  24. 24.
    J. Lopez, D. Nanopoulos, A. Zichichi, Experimental consequences of one-parameter no-scale supergravity models. Int. J. Mod. Phys. (A 10)(August 1994), pp. 4241–4264 (1995, hep-ph/9408345)Google Scholar
  25. 25.
    M. Klasen, G. Pignol, New results for light gravitinos at hadron colliders: fermilab Tevatron limits and CERN LHC perspectives. Phys. Rev. D 75(11), 30 (2007, hep-ph/0610160)Google Scholar
  26. 26.
    Y. Kats, P. Meade, M. Reece, D. Shih, The Status of GMSB After 1/fb at the LHC Introduction, J. High Energy Phys. 2012(02), 115 (2011, arXiv: 1110.6444)Google Scholar
  27. 27.
    N.D. Christensen, C. Duhr, FeynRules—Feynman rules made easy. Comput. Phys. Commun. 180(9), 63 (2008, 0806.4194)Google Scholar
  28. 28.
    K. Mawatari, The simplified SUSY model that includes goldstino interactions implemented in MadGraph/MadEvent via FeynRules is available in the FeynRules website. [https://feynrules.irmp.ucl.ac.be/wiki/ModelDatabaseMainPage]
  29. 29.
    C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer, T. Reiter, UFO G the universal FeynRules output. Comput. Phys. Commun. 183(6), 1201–1214 (2012, 1108.2040)Google Scholar
  30. 30.
    P. de Aquino, W. Link, F. Maltoni, O. Mattelaer, and T. Stelzer, ALOHA: Automatic Libraries of Helicity Amplitudes for Feynman diagram computations. Comput. Phys. Commun. 183 2254–2263 (2012, 1108.2041)Google Scholar
  31. 31.
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer, MadGraph 5: going beyond. J. High Energy Phys. 2011(6), 37 (2011, 1106.0522)Google Scholar
  32. 32.
    CMS Collaboration, CMS physics analysis summary: search for supersymmetry in all-hadronic events with missing energy, Technical Report CMS-PAS-SUS-11-004, CERN (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institute of theoretical physicsKatholieke Universiteit LeuvenLeuvenBelgium
  2. 2.Center of Particle Physics and CosmologyUniversité catholique de LouvainLeuvenBelgium

Personalised recommendations