Phenomenology of Graviton Production

  • Priscila de AquinoEmail author
Part of the Springer Theses book series (Springer Theses)


In exact sciences, the word “phenomenology” is employed to relate empirical observations of phenomena with theories that attempt to describe it. Comparison between theory and experiment is achieved through computer simulations. High-energy events are generated following the probability distributions expected from a theory, assuming certain initial conditions. Once the expectations of a particular theory are known, it is easy to test it and to constrain parameters. The goal of this chapter is to perform phenomenological analyses on graviton emission processes at hadron colliders, taking into account theories which have been previously presented as a possible extension to the SM.


Graviton Production Graviton Emission Leading Order Process Parton Distribution Functions (PDF) Tevatron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    X. Calmet, P. de Aquino, Quantum gravity at the LHC. Eur. Phys. J. C 68(1–2), 305–311 (2010)Google Scholar
  2. 2.
    X. Calmet, P. de Aquino, T.G. Rizzo, Massless versus Kaluza-Klein gravitons at the LHC. Phys. Lett. B 682(4–5), 446–449 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    P. de Aquino, K. Hagiwara, Q. Li, F. Maltoni, Simulating graviton production at hadron colliders. J. High Energy Phys. 2011(06), 132 (2011, 1101.5499)Google Scholar
  4. 4.
    K. Hagiwara, J. Kanzaki, Q. Li, K. Mawatari, HELAS and MadGraph/MadEvent with spin-2 particles. Eur. Phys. J. C 56(3), 435–447 (2008, 0805.2554)Google Scholar
  5. 5.
    L. Vacavant, I. Hinchliffe, Signals of models with large extra dimensions in ATLAS. J. Phys. G Nucl. Part. Phys. 27(8), 1839–1850 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    CDF Collaboration and T. Aaltonen, Search for large extra dimensions in final states containing one photon or jet and large missing transverse energy produced in p-pbar collisions at sqrt(s) = 1.96 TeV. Phys. Rev. Lett. 101(18), 1–7 (2008, 0807.3132)Google Scholar
  7. 7.
    CDF Collaboration and A. Abulencia, Search for Large Extra Dimensions in the Production of Jets and Missing Transverse Energy in p-pbar Collisions at sqrt(s)=1.96 TeV. Phys. Rev. Lett. 97(17), 7 (2006, hep-ex/0605101)Google Scholar
  8. 8.
    X. Calmet, M. Feliciangeli, Bound on four-dimensional Planck mass. Phys. Rev. D 78(6), 1–3 (2008)CrossRefGoogle Scholar
  9. 9.
    T.G. Rizzo, Unique signatures of unparticle resonances at the LHC. J. High Energy Phys. 2008(11), 039 (2008, 0809.4659)Google Scholar
  10. 10.
    P. Nadolsky, H.-L. Lai, Q.-H. Cao, J. Huston, J. Pumplin, D. Stump, W.-K. Tung, and C.-P. Yuan, Implications of CTEQ global analysis for collider observables. Phys. Rev. D 78(1), 32 (2008, 0802.0007)Google Scholar
  11. 11.
    J.M. Butterworth and Others, The tools and Monte Carlo working group: summary report from the Les Houches 2009 workshop on TeV colliders, p. 144 (2010, 1003.1643)Google Scholar
  12. 12.
    S. Karg, M. Krämer, Next-to-leading-order QCD corrections to graviton production at hadron colliders. Phys. Rev. D 81(9), 19 (2010, 0911.5095)Google Scholar
  13. 13.
    K. Hagiwara, P. Konar, Q. Li, K. Mawatari, D. Zeppenfeld, Graviton production with 2 jets at the LHC in large extra dimensions. J. High Energy Phys. 2008(04), 019 (2008, 0801.1794)Google Scholar
  14. 14.
    T. Sjöstrand, S. Mrenna, P. Skands, A brief introduction to PYTHIA 8.1. Comput. Phys. Commun. 178(11), 852–867 (2008, 0710.3820)Google Scholar
  15. 15.
    G. Corcella, I. G. Knowles, G. Marchesini, S. Moretti, K. Odagiri, P. Richardson, M.H. Seymour, B.R. Webber, HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes). J. High Energy Phys. 2001(01) 010 (2001, hep-ph/0011363)Google Scholar
  16. 16.
    P. Mathews, V. Ravindran, K. Sridhar, W.L. van Neerven, Next-to-leading order QCD corrections to the Drell-Yan cross section in models of TeV-scale gravity. Nucl. Phys. B 713(1–3), 65 (2004, hep-ph/0411018)Google Scholar
  17. 17.
    P. Mathews, V. Ravindran, K. Sridhar, NLO-QCD corrections to dilepton production in the Randall-Sundrum model. J. High Energy Phys. 2005(10), 031 (2005, hep-ph/0506158)Google Scholar
  18. 18.
    Q. Li, C. Li, L. Yang, Soft gluon resummation effects in single graviton production at the CERN large hadron collider in the Randall-Sundrum model. Phys. Rev. D 74(5), 26 (2006, hep-ph/0606045)Google Scholar
  19. 19.
    J. Pumplin, D. R. Stump, J. Huston, H.-L. Lai, P. Nadolsky, W.-K. Tung, New generation of parton distributions with uncertainties from global QCD analysis. J. High Energy Phys. 2002(07), 012 (2002, hep-ph/0201195)Google Scholar
  20. 20.
    D0 Collaboration and V.M. Abazov, Search for large extra dimensions via single photon plus missing energy final states at sqrt(s)=1.96 TeV. Phys. Rev. Lett. 101(1), 011601 (2008)Google Scholar
  21. 21.
    H. Davoudiasl, Echoes from a warped dimension. Nucl. Phys. B—Proceedings Supplements 200–202, 149–158 (2010, 0909.1587)Google Scholar
  22. 22.
    CDF Collaboration and T. Aaltonen, A search for high-mass resonances decaying to dimuons at CDF. Phys. Rev. Lett. 102(9), 091805 (2008, 0811.0053)Google Scholar
  23. 23.
    D0 Collaboration and V. M.Abazov, Search for randall-sundrum gravitons with 1 fb\(^{-1}\) of data from p-pbar collisions at sqrt(s)=1.96 TeV. Phys. Rev. Lett. 100(9), 091802 (2008)Google Scholar
  24. 24.
    M. Rubin, G.P. Salam, S. Sapeta, Giant QCD K-factors beyond NLO. J. High Energy Phys. 2010(9), 38 (2010, 1006.2144)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institute of theoretical physicsKatholieke Universiteit LeuvenLeuvenBelgium
  2. 2.Center of Particle Physics and CosmologyUniversité catholique de LouvainLeuvenBelgium

Personalised recommendations