Advertisement

The LHC and Collision Simulations

  • Priscila de AquinoEmail author
Chapter
  • 721 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

The Large Hadron Collider (or LHC for short) was built to collide protons at a very high center-of-mass energy, in order to test predictions of different theories in particle physics and to confirm the existence of the Higgs boson. For the comparison between experimental data against theory predictions, simulations play a crucial role. In this chapter, we present an overview of both the LHC itself and methods used to simulate events at hadron colliders.

Keywords

Large Hadron Collider Transverse Momentum Hadron Collider Compact Muon Solenoid Parton Shower 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.M. Campbell, J.W. Huston, W.J. Stirling, Hard interactions of quarks and gluons: a primer for LHC physics. Rep. Prog. Phys. 70(1), 89–193 (2007, hep-ph/0611148)Google Scholar
  2. 2.
    E. Halkiadakis, in Proceedings for TASI 2009 summer school on physics of the large and the small: introduction to the LHC experiments, p. 32 (2010, 1004.5564)Google Scholar
  3. 3.
    S. de Visscher, Observability of an unconventional two-Higgs-doublet model at the LHC. PhD thesis, Universite Catholique de Louvain, 2009Google Scholar
  4. 4.
    C. Lefèvre, Illustration of the CERN accelerator complex. (2008) http://cdsweb.cern.ch/record/1260465
  5. 5.
    R.K. Ellis, W.J. Stirling, B.R. Webber, QCD and collider physics. (Cambridge University Press, Cambridge, 2003)Google Scholar
  6. 6.
    F. Maltoni, T. McElmurry, R. Putman, S. Willenbrock, Choosing the factorization scale in perturbative QCD, p. 25 (2007, hep-ph/0703156)Google Scholar
  7. 7.
    C. Quigg, LHC Physics Potential vs. Energy: Considerations for the 2011 Run. FERMILAB-53/FN-0913-T, p. 33 (2011, 1101.3201)Google Scholar
  8. 8.
    G.P. Salam, Elements of QCD for hadron colliders, Proceedings of 2009 European School of High-Energy Physics—ESHEP 2009 (2010, 1011.5131)Google Scholar
  9. 9.
    G.P. Salam, Towards jetography, Eur. Phys. J. C67, 637–686 (2010, 0906.1833)Google Scholar
  10. 10.
    G. Sterman, Jets from quantum chromodynamics. Phys. Rev. Lett. 39(23), 1436–1439 (1977)ADSCrossRefGoogle Scholar
  11. 11.
    G.P. Salam, G. Soyez, A practical seedless infrared-safe cone jet algorithm. J. High Energy Phys. 2007(05), 086 (2007, 0704.0292)Google Scholar
  12. 12.
    S. Catani, Y. Dokshitzer, M. Olsson, G. Turnock, B.R. Webber, New clustering algorithm for multijet cross sections in \(e^+e^-\) annihilation. Phys. Lett. B 269(3–4), 432–438 (1991)ADSCrossRefGoogle Scholar
  13. 13.
    S. Catani, Y. Dokshitzer, M.H. Seymour, B.R. Webber, Longitudinally-invariant \(k_T\)-clustering algorithms for hadron-hadron collisions. Nucl. Phys. B 406(1–2), 187–224 (1993)ADSCrossRefGoogle Scholar
  14. 14.
    S.D. Ellis, D.E. Soper, Successive combination jet algorithm for hadron collisions. Phys. Rev. D 48(7), 18 (1993, hep-ph/9305266)Google Scholar
  15. 15.
    M. Cacciari, G.P. Salam, G. Soyez, The anti-\({\rm k}\_\)t jet clustering algorithm. J. High Energy Phys. 2008(04), 12 (2008, 0802.1189)Google Scholar
  16. 16.
    C. Anastasiou, L. Dixon, K. Melnikov, F. Petriello, High-precision QCD at hadron colliders: Electroweak gauge boson rapidity distributions at next-to-next-to leading order. Phys. Rev. D 69(9) (2004, hep-ex/0312266)Google Scholar
  17. 17.
    G. Ossola, C.G. Papadopoulos, R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes. J. High Energy Phys. 2008(03), 042 (2008, 0711.3596)Google Scholar
  18. 18.
    R. Frederix, S. Frixione, F. Maltoni, T. Stelzer, Automation of next-to-leading order computations in QCD: the FKS subtraction. J. High Energy Phys. 2009(10), 003 (2009, 0908.4272)Google Scholar
  19. 19.
    V. Hirschi, R. Frederix, S. Frixione, M. Vittoria Garzelli, F. Maltoni, R. Pittau, Automation of one-loop QCD computations. J. High Energy Phys. 2011(5), 64 (2011, 1103.0621)Google Scholar
  20. 20.
    T. Gleisberg, S. Hoeche, F. Krauss, A. Schaelicke, S. Schumann, J. Winter, SHERPA 1.alpha, a proof-of-concept version. J. High Energy Phys. 2004(02), 28 (2003, hep-ph/0311263)Google Scholar
  21. 21.
    A. Pukhov, CalcHEP 2.3: MSSM, structure functions, event generation, batchs, and generation of matrix elements for other packages, pp. 1–31 (2004, hep-ph/0412191)Google Scholar
  22. 22.
    E. Boos, V. Bunichev, M. Dubinin, L. Dudko, V. Edneral, V. Ilyin, A. Kryukov, V. Savrin, A. Semenov, A. Sherstnev, CompHEP 4.4-automatic computations from Lagrangians to events. Nucl. Instrum. Methods Phys. Res., Sect. A 534(1–2), 250–259 (2004, hep-ph/0403113)Google Scholar
  23. 23.
    J. Alwall, P. Demin, S. de Visscher, R. Frederix, M. Herquet, F. Maltoni, T. Plehn, D.L. Rainwater, T. Stelzer, MadGraph/MadEvent v4: the new web generation. J. High Energy Phys. 2007(09), 028 (2007, 0706.2334)Google Scholar
  24. 24.
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer, MadGraph 5: going beyond. J. High Energy Phys. 2011(6), 37 (2011, 1106.0522)Google Scholar
  25. 25.
    T. Stelzer, W. Long, Automatic generation of tree level helicity amplitudes. Comput. Phys. Commun. 81(3), 357–371 (1994, hep-ph/9401258)Google Scholar
  26. 26.
    F. Maltoni, T. Stelzer, MadEvent: Automatic event generation with MadGraph. J. High Energy Phys. 2003(02), 027 (2003, hep-ph/0208256)Google Scholar
  27. 27.
    M.L. Mangano, F. Piccinini, A.D. Polosa, M. Moretti, R. Pittau, ALPGEN, a generator for hard multiparton processes in hadronic collisions. J. High Energy Phys. 2003(07), 001 (2003, hep-ph/0206293)Google Scholar
  28. 28.
    A. Cafarella, C. G. Papadopoulos, M. Worek, Helac-Phegas: A generator for all parton level processes. Comput. Phys. Commun. 180(10), 1941–1955 (2009, 0710.2427)Google Scholar
  29. 29.
    W. Kilian, T. Ohl, J. Reuter, WHIZARD: Simulating multi-particle processes at LHC and ILC. Eur. Phys. J. C 71(9) (2007, 0708.4233)Google Scholar
  30. 30.
    K. Mawatari, Y. Takaesu, HELAS and MadGraph with goldstinos. Eur. Phys. J. C 71(6), 1–10 (2011)CrossRefGoogle Scholar
  31. 31.
    K. Hagiwara, J. Kanzaki, Q. Li, K. Mawatari, HELAS and MadGraph/MadEvent with spin-2 particles. Eur. Phys. J. C 56(3), 435–447 (2008, 0805.2554)Google Scholar
  32. 32.
    K. Hagiwara, K. Mawatari, Y. Takaesu, HELAS and MadGraph with spin-3/2 particles. Eur. Phys. J. C 71(1), 1–14 (2011)CrossRefGoogle Scholar
  33. 33.
    H. Murayama, I. Watanabe, K. Hagiwara, HELAS: HELicity amplitude subroutines for Feynman diagram evaluations. http://www-lib.kek.jp/cgi-bin/img_index?199124011 (1992, KEK-91-11)
  34. 34.
    P. de Aquino, W. Link, F. Maltoni, O. Mattelaer, T. Stelzer, ALOHA: Automatic Libraries of Helicity Amplitudes for Feynman diagram computations, Comput. Phys. Commun. 183, 2254–2263 (2012, 1108.2041)Google Scholar
  35. 35.
    R.C. Group, Measurement of the inclusive jet cross section using the midpoint algorithm in Run II at the Collider Detector at Fermilab (CDF). PhD thesis, University of Florida, 2006Google Scholar
  36. 36.
    T. Sjöstrand, S. Mrenna, P. Skands, A brief introduction to PYTHIA 8.1. Comput. Phys. Commun. 178(11), 852–867 (2008, 0710.3820)Google Scholar
  37. 37.
    G. Corcella, I.G. Knowles, G. Marchesini, S. Moretti, K. Odagiri, P. Richardson, M.H. Seymour, B.R. Webber, HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes). J. High Energy Phys. 2001(01) (2001, hep-ph/0011363)Google Scholar
  38. 38.
    L. Lönnblad, Ariadne version 4—A program for simulation of QDC cascades implementing the colour dipole model. Comput. Phys. Commun. 71(1–2), 15–31 (1992)Google Scholar
  39. 39.
    F. Krauss, Matrix elements and parton showers in Hadronic interactions. J. High Energy Phys. 2002(08), 015 (2002, hep-ph/0205283)Google Scholar
  40. 40.
    S. Catani, F. Krauss, B. R. Webber, R. Kuhn, QCD matrix elements + parton showers. J. High Energy Phys. 2001(11), 063 (2001, hep-ph/0109231)Google Scholar
  41. 41.
    J. Alwall, S. Höche, F. Krauss, N. Lavesson, L. Lönnblad, F. Maltoni, M. Mangano, M. Moretti, C. Papadopoulos, F. Piccinini, S. Schumann, M. Treccani, J. Winter, M. Worek, Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions. Eur. Phys. J. C 53(3), 473–500 (2007, 0706.2569)Google Scholar
  42. 42.
    F. Caravaglios, A new approach to multi-jet calculations in hadron collisions. Nucl. Phys. B 539(1–2), 215–232 (1999, hep-ph/9807570)Google Scholar
  43. 43.
    S. Hoeche, F. Krauss, N. Lavesson, L. Lonnblad, M. Mangano, A. Schaelicke, S. Schumann, Matching parton showers and matrix elements. Proceedings of HERA and the LHC: A workshop on the implications of HERA for LHC Physics CERN—DESY 2004/2005 (2006, hep-ph/0602031)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institute of theoretical physicsKatholieke Universiteit LeuvenLeuvenBelgium
  2. 2.Center of Particle Physics and CosmologyUniversité catholique de LouvainLeuvenBelgium

Personalised recommendations