Skip to main content

The LHC and Collision Simulations

  • Chapter
  • First Online:
Beyond Standard Model Phenomenology at the LHC

Part of the book series: Springer Theses ((Springer Theses))

  • 788 Accesses

Abstract

The Large Hadron Collider (or LHC for short) was built to collide protons at a very high center-of-mass energy, in order to test predictions of different theories in particle physics and to confirm the existence of the Higgs boson. For the comparison between experimental data against theory predictions, simulations play a crucial role. In this chapter, we present an overview of both the LHC itself and methods used to simulate events at hadron colliders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Tevatron is located at the Fermi National Accelerator Laboratory, and was built to collide protons and anti-protons with a center-of-mass energy limit of approximately 2  TeV. It has worked from 1983 until September of 2011, having many important discoveries on its list of achievements (including the discovery of the top quark in 1995). The large number of breakthroughs made by the Tevatron enabled the proposition of a even stronger particle collider, the LHC.

  2. 2.

    Once a parton is emitted, it can multiply and emit other partons. These are usually soft, or collinear partons, which can be approximately reproduced in perturbation theory. A more precise explanation is given further ahead within this chapter.

References

  1. J.M. Campbell, J.W. Huston, W.J. Stirling, Hard interactions of quarks and gluons: a primer for LHC physics. Rep. Prog. Phys. 70(1), 89–193 (2007, hep-ph/0611148)

    Google Scholar 

  2. E. Halkiadakis, in Proceedings for TASI 2009 summer school on physics of the large and the small: introduction to the LHC experiments, p. 32 (2010, 1004.5564)

    Google Scholar 

  3. S. de Visscher, Observability of an unconventional two-Higgs-doublet model at the LHC. PhD thesis, Universite Catholique de Louvain, 2009

    Google Scholar 

  4. C. Lefèvre, Illustration of the CERN accelerator complex. (2008) http://cdsweb.cern.ch/record/1260465

  5. R.K. Ellis, W.J. Stirling, B.R. Webber, QCD and collider physics. (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  6. F. Maltoni, T. McElmurry, R. Putman, S. Willenbrock, Choosing the factorization scale in perturbative QCD, p. 25 (2007, hep-ph/0703156)

    Google Scholar 

  7. C. Quigg, LHC Physics Potential vs. Energy: Considerations for the 2011 Run. FERMILAB-53/FN-0913-T, p. 33 (2011, 1101.3201)

    Google Scholar 

  8. G.P. Salam, Elements of QCD for hadron colliders, Proceedings of 2009 European School of High-Energy Physics—ESHEP 2009 (2010, 1011.5131)

    Google Scholar 

  9. G.P. Salam, Towards jetography, Eur. Phys. J. C67, 637–686 (2010, 0906.1833)

    Google Scholar 

  10. G. Sterman, Jets from quantum chromodynamics. Phys. Rev. Lett. 39(23), 1436–1439 (1977)

    Article  ADS  Google Scholar 

  11. G.P. Salam, G. Soyez, A practical seedless infrared-safe cone jet algorithm. J. High Energy Phys. 2007(05), 086 (2007, 0704.0292)

    Google Scholar 

  12. S. Catani, Y. Dokshitzer, M. Olsson, G. Turnock, B.R. Webber, New clustering algorithm for multijet cross sections in \(e^+e^-\) annihilation. Phys. Lett. B 269(3–4), 432–438 (1991)

    Article  ADS  Google Scholar 

  13. S. Catani, Y. Dokshitzer, M.H. Seymour, B.R. Webber, Longitudinally-invariant \(k_T\)-clustering algorithms for hadron-hadron collisions. Nucl. Phys. B 406(1–2), 187–224 (1993)

    Article  ADS  Google Scholar 

  14. S.D. Ellis, D.E. Soper, Successive combination jet algorithm for hadron collisions. Phys. Rev. D 48(7), 18 (1993, hep-ph/9305266)

    Google Scholar 

  15. M. Cacciari, G.P. Salam, G. Soyez, The anti-\({\rm k}\_\)t jet clustering algorithm. J. High Energy Phys. 2008(04), 12 (2008, 0802.1189)

    Google Scholar 

  16. C. Anastasiou, L. Dixon, K. Melnikov, F. Petriello, High-precision QCD at hadron colliders: Electroweak gauge boson rapidity distributions at next-to-next-to leading order. Phys. Rev. D 69(9) (2004, hep-ex/0312266)

    Google Scholar 

  17. G. Ossola, C.G. Papadopoulos, R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes. J. High Energy Phys. 2008(03), 042 (2008, 0711.3596)

    Google Scholar 

  18. R. Frederix, S. Frixione, F. Maltoni, T. Stelzer, Automation of next-to-leading order computations in QCD: the FKS subtraction. J. High Energy Phys. 2009(10), 003 (2009, 0908.4272)

    Google Scholar 

  19. V. Hirschi, R. Frederix, S. Frixione, M. Vittoria Garzelli, F. Maltoni, R. Pittau, Automation of one-loop QCD computations. J. High Energy Phys. 2011(5), 64 (2011, 1103.0621)

    Google Scholar 

  20. T. Gleisberg, S. Hoeche, F. Krauss, A. Schaelicke, S. Schumann, J. Winter, SHERPA 1.alpha, a proof-of-concept version. J. High Energy Phys. 2004(02), 28 (2003, hep-ph/0311263)

    Google Scholar 

  21. A. Pukhov, CalcHEP 2.3: MSSM, structure functions, event generation, batchs, and generation of matrix elements for other packages, pp. 1–31 (2004, hep-ph/0412191)

    Google Scholar 

  22. E. Boos, V. Bunichev, M. Dubinin, L. Dudko, V. Edneral, V. Ilyin, A. Kryukov, V. Savrin, A. Semenov, A. Sherstnev, CompHEP 4.4-automatic computations from Lagrangians to events. Nucl. Instrum. Methods Phys. Res., Sect. A 534(1–2), 250–259 (2004, hep-ph/0403113)

    Google Scholar 

  23. J. Alwall, P. Demin, S. de Visscher, R. Frederix, M. Herquet, F. Maltoni, T. Plehn, D.L. Rainwater, T. Stelzer, MadGraph/MadEvent v4: the new web generation. J. High Energy Phys. 2007(09), 028 (2007, 0706.2334)

    Google Scholar 

  24. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer, MadGraph 5: going beyond. J. High Energy Phys. 2011(6), 37 (2011, 1106.0522)

    Google Scholar 

  25. T. Stelzer, W. Long, Automatic generation of tree level helicity amplitudes. Comput. Phys. Commun. 81(3), 357–371 (1994, hep-ph/9401258)

    Google Scholar 

  26. F. Maltoni, T. Stelzer, MadEvent: Automatic event generation with MadGraph. J. High Energy Phys. 2003(02), 027 (2003, hep-ph/0208256)

    Google Scholar 

  27. M.L. Mangano, F. Piccinini, A.D. Polosa, M. Moretti, R. Pittau, ALPGEN, a generator for hard multiparton processes in hadronic collisions. J. High Energy Phys. 2003(07), 001 (2003, hep-ph/0206293)

    Google Scholar 

  28. A. Cafarella, C. G. Papadopoulos, M. Worek, Helac-Phegas: A generator for all parton level processes. Comput. Phys. Commun. 180(10), 1941–1955 (2009, 0710.2427)

    Google Scholar 

  29. W. Kilian, T. Ohl, J. Reuter, WHIZARD: Simulating multi-particle processes at LHC and ILC. Eur. Phys. J. C 71(9) (2007, 0708.4233)

    Google Scholar 

  30. K. Mawatari, Y. Takaesu, HELAS and MadGraph with goldstinos. Eur. Phys. J. C 71(6), 1–10 (2011)

    Article  Google Scholar 

  31. K. Hagiwara, J. Kanzaki, Q. Li, K. Mawatari, HELAS and MadGraph/MadEvent with spin-2 particles. Eur. Phys. J. C 56(3), 435–447 (2008, 0805.2554)

    Google Scholar 

  32. K. Hagiwara, K. Mawatari, Y. Takaesu, HELAS and MadGraph with spin-3/2 particles. Eur. Phys. J. C 71(1), 1–14 (2011)

    Article  Google Scholar 

  33. H. Murayama, I. Watanabe, K. Hagiwara, HELAS: HELicity amplitude subroutines for Feynman diagram evaluations. http://www-lib.kek.jp/cgi-bin/img_index?199124011 (1992, KEK-91-11)

  34. P. de Aquino, W. Link, F. Maltoni, O. Mattelaer, T. Stelzer, ALOHA: Automatic Libraries of Helicity Amplitudes for Feynman diagram computations, Comput. Phys. Commun. 183, 2254–2263 (2012, 1108.2041)

    Google Scholar 

  35. R.C. Group, Measurement of the inclusive jet cross section using the midpoint algorithm in Run II at the Collider Detector at Fermilab (CDF). PhD thesis, University of Florida, 2006

    Google Scholar 

  36. T. Sjöstrand, S. Mrenna, P. Skands, A brief introduction to PYTHIA 8.1. Comput. Phys. Commun. 178(11), 852–867 (2008, 0710.3820)

    Google Scholar 

  37. G. Corcella, I.G. Knowles, G. Marchesini, S. Moretti, K. Odagiri, P. Richardson, M.H. Seymour, B.R. Webber, HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes). J. High Energy Phys. 2001(01) (2001, hep-ph/0011363)

    Google Scholar 

  38. L. Lönnblad, Ariadne version 4—A program for simulation of QDC cascades implementing the colour dipole model. Comput. Phys. Commun. 71(1–2), 15–31 (1992)

    Google Scholar 

  39. F. Krauss, Matrix elements and parton showers in Hadronic interactions. J. High Energy Phys. 2002(08), 015 (2002, hep-ph/0205283)

    Google Scholar 

  40. S. Catani, F. Krauss, B. R. Webber, R. Kuhn, QCD matrix elements + parton showers. J. High Energy Phys. 2001(11), 063 (2001, hep-ph/0109231)

    Google Scholar 

  41. J. Alwall, S. Höche, F. Krauss, N. Lavesson, L. Lönnblad, F. Maltoni, M. Mangano, M. Moretti, C. Papadopoulos, F. Piccinini, S. Schumann, M. Treccani, J. Winter, M. Worek, Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions. Eur. Phys. J. C 53(3), 473–500 (2007, 0706.2569)

    Google Scholar 

  42. F. Caravaglios, A new approach to multi-jet calculations in hadron collisions. Nucl. Phys. B 539(1–2), 215–232 (1999, hep-ph/9807570)

    Google Scholar 

  43. S. Hoeche, F. Krauss, N. Lavesson, L. Lonnblad, M. Mangano, A. Schaelicke, S. Schumann, Matching parton showers and matrix elements. Proceedings of HERA and the LHC: A workshop on the implications of HERA for LHC Physics CERN—DESY 2004/2005 (2006, hep-ph/0602031)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priscila de Aquino .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de Aquino, P. (2014). The LHC and Collision Simulations. In: Beyond Standard Model Phenomenology at the LHC. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-00762-5_4

Download citation

Publish with us

Policies and ethics