Gravitation in Beyond Standard Model Theories

  • Priscila de AquinoEmail author
Part of the Springer Theses book series (Springer Theses)


It has been shown that the SM is a successful theory that unifies three forces of Nature. However, general relativity is still left apart, and for many years several analyses seeking a general unification have been made. Throughout this chapter we shall briefly present the standard description used to quantize gravity, and assemble a quantum field theory that unifies all forces. The intention is also to display the limitation of the standard quantum gravity theory and introduce how new theories could well address SM shortcomings.


Extra Dimension Planck Scale Hide Sector Feynman Rule Electroweak Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J. Donoghue, General relativity as an effective field theory: The leading quantum corrections. Phys. Rev. D 50(6), 3874–3888 (1994, gr-qc/9405057)Google Scholar
  2. 2.
    A. Zee, Quantum Field Theory in a Nutshell (Princeton University Press, NJ, 2003)Google Scholar
  3. 3.
    S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (John Wiley & Sons, Inc., New York, 1972)Google Scholar
  4. 4.
    M. Fierz, W. Pauli, On Relativistic Wave Equations for Particles of Arbitrary Spin in an Electromagnetic Field. Proc. R. Soc. A: Math. Phys. Eng. Sci. 173(953), 211–232 (1939)Google Scholar
  5. 5.
    T. Han, J. Lykken, R.-J. Zhang, Kaluza-Klein states from large extra dimensions. Phys. Rev. D 59(10), 28 (1999, hep-ph/9811350)Google Scholar
  6. 6.
    J. Donoghue, Leading quantum correction to the Newtonian potential. Phys. Rev. Lett. 72(19), 2996–2999 (1994, gr-qc/9310024)Google Scholar
  7. 7.
    G. Dvali, M. Redi, Black hole bound on the number of species and quantum gravity at CERN LHC. Phys. Rev. D 77(4), 15 (2008, 0710.4344)Google Scholar
  8. 8.
    G. Dvali, Black holes and large N species solution to the hierarchy problem. Fortschr. Phys. 58(6), 528–536 (2010, 0706.2050)Google Scholar
  9. 9.
    G. Dvali, G. Gabadadze, M. Kolanović, F. Nitti, Scales of gravity. Phys. Rev. D 65 (2), 51 (2001, hep-th/0106058)Google Scholar
  10. 10.
    X. Calmet, M. Graesser, S. Hsu, Minimum Length from First Principles. Int. J. Mod. Phys. D14, 2195–2200 (2005, hep-th/0505144)Google Scholar
  11. 11.
    X. Calmet, M. Graesser, S. Hsu, Minimum length from quantum mechanics and classical general relativity. Phys. Rev. Lett. 93(21), 19–22 (2004)MathSciNetCrossRefGoogle Scholar
  12. 12.
    X. Calmet, S. Hsu, D. Reeb, Quantum gravity at a TeV and the renormalization of NewtonGs constant. Phys. Rev. D 77(12), 1–5 (2008)CrossRefGoogle Scholar
  13. 13.
    M. Atkins, X. Calmet, On the unitarity of linearized general relativity coupled to matter. Phys. Lett. B 695(1–4), 298–302 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    X. Calmet, A review of quantum gravity at the large Hadron collider, Mod. Phys. Lett. A 25, 1553–1579 (2010). doi: 10.1142/S0217732310033591
  15. 15.
    N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phenomenology, astrophysics, and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity. Phys. Rev. D 59(8), 51 (1999, hep-ph/9807344)Google Scholar
  16. 16.
    N. Arkani-Hamed, S. Dimopoulos, G. Dvali, The hierarchy problem and new dimensions at a millimeter. Phys. Lett. B 429(3–4), 16 (1998, hep-ph/9803315)Google Scholar
  17. 17.
    I. Antoniadis, New dimensions at a millimeter to a fermi and superstrings at a TeV. Phys. Lett. B 436(3–4), 257–263 (1998, hep-ph/9804398)Google Scholar
  18. 18.
    T. Kaluza, Zum Unitatsproblem der Physik. Berl. Ber. 1921, 966–972 (1921)Google Scholar
  19. 19.
    L. Randall, R. Sundrum, A large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 83(17), 9 (1999, hep-ph/9905221)Google Scholar
  20. 20.
    L. Randall, R. Sundrum, An alternative to compactification. Phys. Rev. Lett. 83 23, 9 (1999, hep-th/9906064)Google Scholar
  21. 21.
    A. Pérez-Lorenzana, An introduction to extra dimensions. J. Phys: Conf. Ser. 18, 224–269 (2005, hep-ph/0503177)Google Scholar
  22. 22.
    E. Mirabelli, M. Perelstein, M. Peskin, Collider Signatures of New Large Space Dimensions. Phys. Rev. Lett. 82(11), 2236–2239 (1999, hep-ph/9811337)Google Scholar
  23. 23.
    G. Giudice, R. Rattazzi, Quantum gravity and extra dimensions at high-energy colliders. Nucl. Phys. B 544(1–2), 3–38 (1999, hep-ph/9811291)Google Scholar
  24. 24.
    K. Agashe, Extra Dimensions. in Colliders and Neutrinos: The Window into Physics Beyond the Standard Model TASI 2006, eds. by S. Dawson, R.N. Mohapatra (World Scientific Publishing Company, Singapore, 2008)Google Scholar
  25. 25.
    S. Dubovsky, V. Rubakov, P. Tinyakov, Brane world: disappearing massive matter. Phys. Rev. D 62(10), 14 (2000, hep-th/0006046)Google Scholar
  26. 26.
    W. Goldberger, M. Wise, Bulk fields in the Randall-Sundrum compactification scenario. Phys. Rev. D 60(10), 8 (1999, hep-ph/9907218)Google Scholar
  27. 27.
    T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of adS. Nucl. Phys. B 586(1–2), 22 (2000, hep-ph/0003129)Google Scholar
  28. 28.
    B.C. Allanach, K. Odagiri, M.J. Palmer, M.A. Parker, A. Sabetfakhri, B.R. Webber, Exploring small extra dimensions at the large hadron collider. J. High Energy Phys. 2002(12), 039–039 (2002)CrossRefGoogle Scholar
  29. 29.
    K. Hinterbichler, Theoretical aspects of massive gravity. Rev. Mod. Phys. 84, 671–710 (2012). doi: 10.1103/RevModPhys.84.671 Google Scholar
  30. 30.
    R. Balian, J. Zinn-Justin, Methods in Field Theory (Les Houches Summer School Proceedings) (World Scientific Publishing Co Pte Ltd, Singapore, 1981)Google Scholar
  31. 31.
    R.P. Feynman, F.B. Morínigo, W.G. Wagner, B. Hatfield, Feynman Lectures on Gravitation (Penguin Press Science Series, Penguin, 1999)Google Scholar
  32. 32.
    H. Van Dam, M. Veltman, On the mass of the graviton. GRG 3(3), 215–220 (1972)CrossRefGoogle Scholar
  33. 33.
    H. Van Dam, M. Veltman, Massive and massless Yang-Mills and gravitational fields. Nucl. Phys. B 22, 397–411 (1970)Google Scholar
  34. 34.
    D. Dicus, S. Willenbrock, Angular momentum content of a virtual graviton. Phys. Lett. B 609(3–4), 5 (2004, hep-ph/0409316)Google Scholar
  35. 35.
    X. Calmet, P. de Aquino, Quantum gravity at the LHC. Eur. Phys. J. C 68(1–2), 305–311 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    B.R. Holstein, Graviton physics. Am. J. Phys. 74(11), 1002 (2006, gr-qc/0607045)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institute of theoretical physicsKatholieke Universiteit LeuvenLeuvenBelgium
  2. 2.Center of Particle Physics and CosmologyUniversité catholique de LouvainLeuvenBelgium

Personalised recommendations