The Standard Model
Chapter
First Online:
- 786 Downloads
Abstract
The Standard Model (SM) is a successful description of particle physics nowadays. It is a quantum field theory that explains the dynamics of our universe through matter and forces. It incorporates three fundamental forces: the weak, the strong and the electromagnetic forces, and includes different types of particles.
Keywords
Dark Matter Higgs Boson Large Hadron Collider Sterile Neutrino Spontaneous Symmetry Breaking
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- 1.E. Noether, Invariante Variationsprobleme. Nachr. d. Konig. Gesellsch. d. Wiss. zu Gottingen, no. Math-phys. Klasse, pp. 235–257 (1918)Google Scholar
- 2.S. Glashow, Partial-symmetries of weak interactions. Nucl. Phys. 22(4), 579–588 (1961)CrossRefGoogle Scholar
- 3.A. Salam, J. Ward, Electromagnetic and weak interactions. Phys. Lett. 13(2), 168–171 (1964)MathSciNetADSCrossRefzbMATHGoogle Scholar
- 4.S. Weinberg, A model of leptons. Phys. Rev. Lett. 19(21), 1264–1266 (1967)ADSCrossRefGoogle Scholar
- 5.A. Salam, in The Nobel Symposium No. 8, ed. by N. Svartholm. Elementary Particle Theory (Almqvist and Wiksell, Stockholm, 1968), p. 367Google Scholar
- 6.MJ. Miss, E. Rusack, The particle content of the standard model. [http://cms.web.cern.ch/news/what-do-we-already-know]
- 7.G. Guralnik, C. Hagen, T. Kibble, Global conservation laws and massless particles. Phys. Rev. Lett. 13(20), 585–587 (1964)ADSCrossRefGoogle Scholar
- 8.P. Higgs, Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13(16), 508–509 (1964)MathSciNetADSCrossRefGoogle Scholar
- 9.F. Englert, R. Brout, Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13(9), 321–323 (1964)MathSciNetADSCrossRefGoogle Scholar
- 10.S.F. Novaes, Standard model: an introduction, Proceedings of the 10th Jorge Andre Swieca Summer School: Particle and Fields, C99-01-31, São Paulo (1999, arXiv: hep-ph/0001283)Google Scholar
- 11.M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory. Westview Press, Perseus Books Group, ISBN: 0-201-50397-2 (Reprint edition, 1995)Google Scholar
- 12.P. Langacker, Introduction to the Standard Model and Electroweak Physics, Proceedings of the TASI08: The Dawn of the LHC era, C08-06-02.2 (2008, arXiv: 0901.0241)Google Scholar
- 13.S. de Visscher, Observability of an unconventional two-Higgs-doublet model at the LHC. PhD thesis, Universite Catholique de Louvain, 2009Google Scholar
- 14.K. Nakamura, Review of Particle Physics. J. Phys. G 37(7A), 075021 (2010)Google Scholar
- 15.M. Baak, M. Goebel, J. Haller, A. Hoecker, D. Ludwig, K. Moenig, M. Schott, J. Stelzer, Updated Status of the Global Electroweak Fit and Constraints on New Physics, Eur. Phys. J. C72, 2003 (2012, arXiv: 1107.0975)Google Scholar
- 16.W. Murray, LHC Higgs Boson searches, Proceedings of 2011 Europhysics Conference on High Energy Physics: EPS-HEP2011, Grenoble (2011, arXiv: 1201.4576)Google Scholar
- 17.LHC Higgs Cross Section Working Group, S. Dittmaier, and Others, Handbook of LHC Higgs Cross Sections: 2. Differential Distributions. CERN-2012-002, p. 275 (2012, 1201.3084)Google Scholar
- 18.G. Aad et al., Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B716, pp. 1–29 (2012, 1207.7214)Google Scholar
- 19.S. Chatrchyan et al., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B716, pp. 30–61 (2012, 1207.7235)Google Scholar
- 20.S. Dawson, Introduction to electroweak symmetry breaking, Proceedings of “ICTP Summer School in High Energy Physics and Cosmology”, Trieste, C-98-06-29.8 (1998, arXiv: hep-ph/9901280)Google Scholar
- 21.L. Wolfenstein, Parametrization of the Kobayashi-Maskawa matrix. Phys. Rev. Lett. 51(21), 1945–1947 (1983)ADSCrossRefGoogle Scholar
- 22.C.S. Wu, E. Ambler, R.W. Hayward, D.D. Hoppes, R.P. Hudson, Experimental test of parity conservation in beta decay. Phys. Rev. 105(4), 1413–1415 (1957)ADSCrossRefGoogle Scholar
- 23.T.D. Lee, C.N. Yang, Question of parity conservation in weak interactions. Phys. Rev. 104(1), 254–258 (1956)ADSCrossRefGoogle Scholar
- 24.D. Griffiths, Introduction to Elementary Particles. (Wiley-VCH, Weinheim, 2008)Google Scholar
- 25.J.H. Christenson, J.W. Cronin, V.L. Fitch, R. Turlay, Evidence for the 2\(\pi \) decay of the \(K_{2}^{0}\) meson. Phys. Rev. Lett. 13(4), 138–140 (1964)ADSCrossRefGoogle Scholar
- 26.B. Aubert, Babar Collaboration, Measurement of CP-violating asymmetries in B0 decays to CP eigenstates. Phys. Rev. Lett. 86(12), pp. 2515–2522 (2001)Google Scholar
- 27.A. Abashian and Others, Measurement of the CP violation parameter sin2\(\phi \)1 in Bd0 meson decays. Phys. Rev. Lett. 86(12), 2509–2514 (2001)Google Scholar
- 28.A.B. Carter, A.I. Sanda, CP violation in B-meson decays. Phys. Rev. D 23(7), 1567–1579 (1981)ADSCrossRefGoogle Scholar
- 29.R.D. Peccei, H.R. Quinn, Constraints imposed by CP conservation in the presence of pseudoparticles. Phys. Rev. D 16(6), 1791–1797 (1977)ADSCrossRefGoogle Scholar
- 30.R.D. Peccei, H.R. Quinn, CP conservation in the presence of pseudoparticles. Phys. Rev. Lett. 38(25), 1440–1443 (1977)ADSCrossRefGoogle Scholar
- 31.K. Freeman, G. McNamara, Search of Dark Matter (Springer Praxis Books/Space Exploration, Springer, Berlin, 2006)Google Scholar
- 32.L. Bergström, Non-baryonic dark matter: observational evidence and detection methods. Rep. Prog. Phys. 63(5), pp. 793–841 (2000, hep-ph/0002126)Google Scholar
- 33.NASA/WMAP Science team, What is the Universe made of? [http://map.gsfc.nasa.gov/universe/uni_matter.html]
- 34.J. Silk, Dark Matter. [http://astro.berkeley.edu/mwhite/darkmatter/essay]
Copyright information
© Springer International Publishing Switzerland 2014