Advertisement

The Standard Model

  • Priscila de AquinoEmail author
Chapter
  • 786 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

The Standard Model (SM) is a successful description of particle physics nowadays. It is a quantum field theory that explains the dynamics of our universe through matter and forces. It incorporates three fundamental forces: the weak, the strong and the electromagnetic forces, and includes different types of particles.

Keywords

Dark Matter Higgs Boson Large Hadron Collider Sterile Neutrino Spontaneous Symmetry Breaking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E. Noether, Invariante Variationsprobleme. Nachr. d. Konig. Gesellsch. d. Wiss. zu Gottingen, no. Math-phys. Klasse, pp. 235–257 (1918)Google Scholar
  2. 2.
    S. Glashow, Partial-symmetries of weak interactions. Nucl. Phys. 22(4), 579–588 (1961)CrossRefGoogle Scholar
  3. 3.
    A. Salam, J. Ward, Electromagnetic and weak interactions. Phys. Lett. 13(2), 168–171 (1964)MathSciNetADSCrossRefzbMATHGoogle Scholar
  4. 4.
    S. Weinberg, A model of leptons. Phys. Rev. Lett. 19(21), 1264–1266 (1967)ADSCrossRefGoogle Scholar
  5. 5.
    A. Salam, in The Nobel Symposium No. 8, ed. by N. Svartholm. Elementary Particle Theory (Almqvist and Wiksell, Stockholm, 1968), p. 367Google Scholar
  6. 6.
    MJ. Miss, E. Rusack, The particle content of the standard model. [http://cms.web.cern.ch/news/what-do-we-already-know]
  7. 7.
    G. Guralnik, C. Hagen, T. Kibble, Global conservation laws and massless particles. Phys. Rev. Lett. 13(20), 585–587 (1964)ADSCrossRefGoogle Scholar
  8. 8.
    P. Higgs, Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13(16), 508–509 (1964)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    F. Englert, R. Brout, Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13(9), 321–323 (1964)MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    S.F. Novaes, Standard model: an introduction, Proceedings of the 10th Jorge Andre Swieca Summer School: Particle and Fields, C99-01-31, São Paulo (1999, arXiv: hep-ph/0001283)Google Scholar
  11. 11.
    M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory. Westview Press, Perseus Books Group, ISBN: 0-201-50397-2 (Reprint edition, 1995)Google Scholar
  12. 12.
    P. Langacker, Introduction to the Standard Model and Electroweak Physics, Proceedings of the TASI08: The Dawn of the LHC era, C08-06-02.2 (2008, arXiv: 0901.0241)Google Scholar
  13. 13.
    S. de Visscher, Observability of an unconventional two-Higgs-doublet model at the LHC. PhD thesis, Universite Catholique de Louvain, 2009Google Scholar
  14. 14.
    K. Nakamura, Review of Particle Physics. J. Phys. G 37(7A), 075021 (2010)Google Scholar
  15. 15.
    M. Baak, M. Goebel, J. Haller, A. Hoecker, D. Ludwig, K. Moenig, M. Schott, J. Stelzer, Updated Status of the Global Electroweak Fit and Constraints on New Physics, Eur. Phys. J. C72, 2003 (2012, arXiv: 1107.0975)Google Scholar
  16. 16.
    W. Murray, LHC Higgs Boson searches, Proceedings of 2011 Europhysics Conference on High Energy Physics: EPS-HEP2011, Grenoble (2011, arXiv: 1201.4576)Google Scholar
  17. 17.
    LHC Higgs Cross Section Working Group, S. Dittmaier, and Others, Handbook of LHC Higgs Cross Sections: 2. Differential Distributions. CERN-2012-002, p. 275 (2012, 1201.3084)Google Scholar
  18. 18.
    G. Aad et al., Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B716, pp. 1–29 (2012, 1207.7214)Google Scholar
  19. 19.
    S. Chatrchyan et al., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B716, pp. 30–61 (2012, 1207.7235)Google Scholar
  20. 20.
    S. Dawson, Introduction to electroweak symmetry breaking, Proceedings of “ICTP Summer School in High Energy Physics and Cosmology”, Trieste, C-98-06-29.8 (1998, arXiv: hep-ph/9901280)Google Scholar
  21. 21.
    L. Wolfenstein, Parametrization of the Kobayashi-Maskawa matrix. Phys. Rev. Lett. 51(21), 1945–1947 (1983)ADSCrossRefGoogle Scholar
  22. 22.
    C.S. Wu, E. Ambler, R.W. Hayward, D.D. Hoppes, R.P. Hudson, Experimental test of parity conservation in beta decay. Phys. Rev. 105(4), 1413–1415 (1957)ADSCrossRefGoogle Scholar
  23. 23.
    T.D. Lee, C.N. Yang, Question of parity conservation in weak interactions. Phys. Rev. 104(1), 254–258 (1956)ADSCrossRefGoogle Scholar
  24. 24.
    D. Griffiths, Introduction to Elementary Particles. (Wiley-VCH, Weinheim, 2008)Google Scholar
  25. 25.
    J.H. Christenson, J.W. Cronin, V.L. Fitch, R. Turlay, Evidence for the 2\(\pi \) decay of the \(K_{2}^{0}\) meson. Phys. Rev. Lett. 13(4), 138–140 (1964)ADSCrossRefGoogle Scholar
  26. 26.
    B. Aubert, Babar Collaboration, Measurement of CP-violating asymmetries in B0 decays to CP eigenstates. Phys. Rev. Lett. 86(12), pp. 2515–2522 (2001)Google Scholar
  27. 27.
    A. Abashian and Others, Measurement of the CP violation parameter sin2\(\phi \)1 in Bd0 meson decays. Phys. Rev. Lett. 86(12), 2509–2514 (2001)Google Scholar
  28. 28.
    A.B. Carter, A.I. Sanda, CP violation in B-meson decays. Phys. Rev. D 23(7), 1567–1579 (1981)ADSCrossRefGoogle Scholar
  29. 29.
    R.D. Peccei, H.R. Quinn, Constraints imposed by CP conservation in the presence of pseudoparticles. Phys. Rev. D 16(6), 1791–1797 (1977)ADSCrossRefGoogle Scholar
  30. 30.
    R.D. Peccei, H.R. Quinn, CP conservation in the presence of pseudoparticles. Phys. Rev. Lett. 38(25), 1440–1443 (1977)ADSCrossRefGoogle Scholar
  31. 31.
    K. Freeman, G. McNamara, Search of Dark Matter (Springer Praxis Books/Space Exploration, Springer, Berlin, 2006)Google Scholar
  32. 32.
    L. Bergström, Non-baryonic dark matter: observational evidence and detection methods. Rep. Prog. Phys. 63(5), pp. 793–841 (2000, hep-ph/0002126)Google Scholar
  33. 33.
    NASA/WMAP Science team, What is the Universe made of? [http://map.gsfc.nasa.gov/universe/uni_matter.html]
  34. 34.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institute of theoretical physicsKatholieke Universiteit LeuvenLeuvenBelgium
  2. 2.Center of Particle Physics and CosmologyUniversité catholique de LouvainLeuvenBelgium

Personalised recommendations