• Priscila de AquinoEmail author
Part of the Springer Theses book series (Springer Theses)


The Standard Model (SM) of fundamental particles and their interactions is one of the most successful theories in physics. It provides an astonishingly accurate description of phenomena in a wide range of scales. In particular, up to the weak scale (a few hundreds of GeV) it agrees to a great degree with the experimental data collected, also predicting the existence of a new scalar state, the Higgs particle.


Weak Scale Graviton Particle Beyond Standard Model (BSM) Large Hadron Collider (LHC) Alternative Simulation Techniques 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phenomenology, astrophysics, and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity. Phys. Rev. D 59(8), 51 (1999, hep-ph/9807344)Google Scholar
  2. 2.
    N. Arkani-Hamed, S. Dimopoulos, G. Dvali, The hierarchy problem and new dimensions at a millimeter. Phys. Lett. B 429(3–4), 16 (1998, hep-ph/9803315)Google Scholar
  3. 3.
    I. Antoniadis, New dimensions at a millimeter to a fermi and superstrings at a TeV. Phys. Lett. B 436(3–4), 257–263 (1998, hep-ph/9804398)Google Scholar
  4. 4.
    L. Randall, R. Sundrum, A large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 83(17), 9 (1999, hep-ph/9905221)Google Scholar
  5. 5.
    L. Randall, R. Sundrum, An alternative to compactification. Phys. Rev. Lett. 83(23), 9 (1999, hep-th/9906064)Google Scholar
  6. 6.
    G. Dvali, M. Redi, Black hole bound on the number of species and quantum gravity at CERN LHC. Phys. Rev. D 77(4), 15 (2008, 0710.4344)Google Scholar
  7. 7.
    G. Dvali, Black holes and large N species solution to the hierarchy problem. Fortschritte der Physik 58(6), 528–536 (2010, 0706.2050)Google Scholar
  8. 8.
    G. Dvali, G. Gabadadze, M. Kolanović, F. Nitti, Scales of gravity. Phys. Rev. D 65(2), 51 (2001, hep-th/0106058)Google Scholar
  9. 9.
    X. Calmet, M. Graesser, S. Hsu, Minimum length from first principles. Int. J. Mod. Phys. D14, 2195–2200 (2005, hep-th/0505144)Google Scholar
  10. 10.
    X. Calmet, M. Graesser, S. Hsu, Minimum length from quantum mechanics and classical general relativity. Phys. Rev. Lett. 93(21), 19–22 (2004)MathSciNetCrossRefGoogle Scholar
  11. 11.
    X. Calmet, S. Hsu, D. Reeb, Quantum gravity at a TeV and the renormalization of Newton’s constant. Phys. Rev. D 77(12), 1–5 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institute of theoretical physicsKatholieke Universiteit LeuvenLeuvenBelgium
  2. 2.Center of Particle Physics and CosmologyUniversité catholique de LouvainLeuvenBelgium

Personalised recommendations