Skip to main content

A Biological Overview of the Cell Cycle and its Response to Osmotic Stress and the \(\alpha \)-Factor

  • Chapter
  • First Online:
Mathematical Modelling of the Cell Cycle Stress Response

Part of the book series: Springer Theses ((Springer Theses))

  • 750 Accesses

Abstract

The word “cell” originates from Latin cella, which means “small room”. It was applied for the first time by Hooke in his book Micrographia in September 1665. There are 10 to perhaps 100 million distinct life forms in the world [1, 32], many of which consist of various types of cells. Although different cells have disparate functions and shapes, they still have a similar basic chemistry [35].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Alberts, D. Bray, K. Hopkin, A. Johnson, J. Lewis, K. Roberts, M. Raff and P. Walter. Essential cell biology 2nd edn. (Taylor and Francis 2003)

    Google Scholar 

  2. M.R. Alexander, M. Tyers, M. Perret, B.M. Craig, K.S. Fang, M.C. Gustin, Regulation of cell cycle progression by Swe1p and Hog1p following hypertonic stress. Mol. Biol. Cell 12(1), 53–62 (2001)

    Google Scholar 

  3. A. Amon, M. Tyers, B. Futcher, K. Nasmyth, Mechanisms that help the yeast cell cycle clock tick: G2 cyclins transcriptionally activate G2 cyclins and repress G1 cyclins. Cell 74(6), 993–1007 (1993)

    Article  Google Scholar 

  4. S. Asano, J.-E. Park, K. Sakchaisri, L.-R. Yu, S. Song, P. Supavilai, T.D. Veenstra, K.S. Lee, Concerted mechanism of Swe1/Wee1 regulation by multiple kinases in budding yeast. EMBO J. 24(12), 2194–2204 (2005)

    Article  Google Scholar 

  5. L. Bardwell, A walk-through of the yeast mating pheromone response pathway. Pept. 26(2), 339–350 (2005)

    Article  Google Scholar 

  6. R.D. Basco, M.D. Segal, S.I. Reed, Negative regulation of G1 and G2 by S-phase cyclins of Saccharomyces cerevisiae. Mol. Cell. Biol. 15(9), 5030–5042 (1995)

    Google Scholar 

  7. M. Bäumer, G.H. Braus, S. Irniger, Two different modes of cyclin Clb2 proteolysis during mitosis in Saccharomyces cerevisiae. FEBS Lett. 468(2–3), 142–148 (2000)

    Article  Google Scholar 

  8. G. Bellí, E. Garí, M. Aldea, E. Herrero, Osmotic stress causes a G1 cell cycle delay and downregulation of Cln3/Cdc28 activity in Saccharomyces cerevisiae. Mol. Microbiol. 39(4), 1022–1035 (2001)

    Google Scholar 

  9. J.L. Brewster, T. De Valoir, N.D. Dwyer, E. Winter, M.C. Gustin, An osmosensing signal transduction pathway in yeast. Sci. 259(5102), 1760–1763 (1993)

    Article  ADS  Google Scholar 

  10. A.C. Burkholder, L.H. Hartwell, The yeast alpha-factor receptor: Structural properties deduced from the sequence of the STE2 gene. Nucleic Acids Res. 13(23), 8463–8475 (1985)

    Article  Google Scholar 

  11. F. Chang, I. Herskowitz, Identification of a gene necessary for cell cycle arrest by a negative growth factor of yeast: FAR1 is an inhibitor of a G1 cyclin, CLN2. Cell 63(5), 999–1011 (1990)

    Article  Google Scholar 

  12. G. Charvin, C. Oikonomou, E.D. Siggia and F.R. Cross. Origin of irreversibility of cell cycle start in budding yeast. PLoS Biol. 8(1), e1000284 (2010)

    Google Scholar 

  13. V.J. Cid, M.J. Shulewitz, K.L. McDonald, J. Thorner, Dynamic localization of the Swe1 regulator Hsl7 during the Saccharomyces cerevisiae cell cycle. Mol. Biol. Cell 12(6), 1645–1649 (2001)

    Article  Google Scholar 

  14. J. Clotet, X. Escoté, M.A. Adrover, G. Yaakov, E. Garí, M. Aldea, E. de Nadal, F. Posas, Phosphorylation of Hsl1 by Hog1 leads to a G2 arrest essential for cell survival at high osmolarity. EMBO J. 25(11), 2338–2346 (2006)

    Google Scholar 

  15. C. Dahmann, J.F. Diffley, K.A. Nasmyth, S-phase-promoting cyclin-dependent kinases prevent re-replication by inhibiting the transition of replication origins to a pre-replicative state. Curr. Biol. 5(11), 1257–1269 (1995)

    Article  Google Scholar 

  16. J.F.X. Diffley, Once and only once upon a time: Specifying and regulating origins of DNA replication in eukaryotic cells. Genes. Devel. 10(22), 2819–2830 (1996)

    Article  Google Scholar 

  17. L. Dirick, T. Böhm, K. Nasmyth, Roles and regulation of Cln-Cdc28 kinases at the start of the cell cycle of Saccharomyces cerevisiae. EMBO J. 14(19), 4803–4813 (1995)

    Google Scholar 

  18. S.J. Elledge, Cell cycle checkpoints: Preventing an identity crisis. Sci. 274(5293), 1664–1672 (1996)

    Article  ADS  Google Scholar 

  19. X. Escoté, M. Zapater, J. Clotet, F. Posas, Hog1 mediates cell-cycle arrest in G1 phase by the dual targeting of Sic1. Nat. Cell Biol. 6(10), 997–1002 (2004)

    Article  Google Scholar 

  20. B. Futcher, Cell cycle synchronization. Methods Cell Sci. 21(2–3), 79–86 (1999)

    Article  Google Scholar 

  21. M.C. Gustin, J. Albertyn, M. Alexander, K. Davenport, Map kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 62(4), 1264–1300 (1998)

    Google Scholar 

  22. J.A. Hadwiger, C. Wittenberg, H.E. Richardson, M. De Barros Lopes, S.I. Reed, A family of cyclin homologs that control the G1 phase in yeast. PNAS 86(16), 6255–6259 (1989)

    Article  ADS  Google Scholar 

  23. D.C. Hagen, G. McCaffrey, G.F. Sprague Jr, Evidence the yeast STE3 gene encodes a receptor for the peptide pheromone a factor: Gene sequence and implications for the structure of the presumed receptor. PNAS 83(5), 1418–1422 (1986)

    Article  ADS  Google Scholar 

  24. L.H. Hartwell and M.W. Unger. Unequal division in Saccharomyces cerevisiae and its implications for the control of cell division. J. Cell Biol. 75(2) 422–435(1977)

    Google Scholar 

  25. L.H. Hartwell, T.A. Weinert, Checkpoints: controls that ensure the order of cell cycle events. Sci. 246(4930), 629–634 (1989)

    Article  ADS  Google Scholar 

  26. S. Hohmann, Osmotic stress signaling and osmoadaptation in yeasts. Microbiol. Mol. Biol. Rev. 66(2), 300–372 (2002)

    Article  Google Scholar 

  27. P. Jorgensen, I. Rupees, J.R. Sharom, L. Schneper, J.R. Broach, M. Tyers, A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size. Genes. Dev. 18(20), 2491–2505 (2004)

    Article  Google Scholar 

  28. D.J. Lew, S.I. Reed, Morphogenesis in the yeast cell cycle: regulation by Cdc28 and cyclins. J. Cell Biol. 120(6), 1305–1320 (1993)

    Google Scholar 

  29. D.J. Lew, Cell-cycle checkpoints that ensure coordination between nuclear and cytoplasmic events in Saccharomyces cerevisiae. Curr. Opin. Genet. Dev. 10(1), 47–53 (2000)

    Article  Google Scholar 

  30. J.N. McMillan, M.S. Longtine, R. Sia, C.L. Theesfeld, E.S. Bardes, J.R. Pringle, D.J. Lew, The morphogenesis checkpoint in Saccharomyces cerevisiae: cell cycle control of Swe1p degradation by Hsl1p and Hsl7p. Mol. Cell. Biol. 19(10), 6929–6939 (1999)

    Google Scholar 

  31. M.D. Mendenhall, A.E. Hodge, Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 62(4), 1191–1243 (1998)

    Google Scholar 

  32. A. Murray and T. Hunt. the cell cycle: An introduction (Oxford University Press, New York, 1993)

    Google Scholar 

  33. P. Nash, X. Tang, S. Orlicky, Q. Chen, F.B. Gertler, M.D. Mendenhall, F. Sicheri, T. Pawson, M. Tyers, Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nat. 414(6863), 514–521 (2001)

    Article  ADS  Google Scholar 

  34. E.A. Nigg, Mitotic kinases as regulators of cell division and its checkpoints. Nat. Rev. Mol. Cell Biol. 2(1), 21–32 (2001)

    Article  Google Scholar 

  35. P. Nurse, Regulation of the eukaryotic cell cycle. Eur. J. Cancer Part A 33(7), 1002–1004 (1997)

    Article  Google Scholar 

  36. S.M. O’Rourke and I. Herskowitz. A third osmosensing branch in Saccharomyces cerevisiae requires the Msb2 potein and functions in parallel with the Sho1 branch. Mol. Cell. Bio. 22(13), 4739–4749 (2002)

    Google Scholar 

  37. M. Peter, I. Herskowitz, Direct inhibition of the yeast cyclin-dependent kinase Cdc28-Cln by Far1. Sci. 265(5176), 1228–1231 (1994)

    Article  ADS  Google Scholar 

  38. F. Posas, H. Saito, Osmotic Activation of the HOG MAPK Pathway via Ste11p MAPKKK: Scaffold Role of Pbs2p MAPKK. Sci. 276(5319), 1702–1705 (1997)

    Article  Google Scholar 

  39. E. Radmaneshfar, M. Thiel, Recovery from stress: a cell cycle perspective. J. Comp. Int. Sci. 3(1–2), 33–44 (2012)

    Google Scholar 

  40. E. Radmaneshfar, D. Kaloriti, M.C. Gustin, N.A.R Gow, A.J.P Brown, C. Grebogi, M.C. Romano and M. Thiel. From START to FINISH: the influence of osmotic stress on the cell cycle. PLoS ONE 8(7), e68067 (2013)

    Google Scholar 

  41. H.E. Richardson, C. Wittenberg, F. Cross, S.I. Reed, An essential G1 function for cyclin-like proteins in yeast. Cell 59(6), 1127–1133 (1989)

    Article  Google Scholar 

  42. E. Schwob, T. Böhm, M.D. Mendenhall, K. Nasmyth, The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. Cell 79(2), 233–244 (1994)

    Article  Google Scholar 

  43. R. Sia, H. Herald, D.J. Lew, Cdc28 tyrosine phosphorylation and the morphogenesis checkpoint in budding yeast. Mol. Biol. Cell 7(11), 1657–1666 (1996)

    Article  Google Scholar 

  44. R. Sia, E.S. Bardes, D.J. Lew, Control of Swe1p degradation by the morphogenesis checkpoint. EMBO J. 17(22), 6678–6688 (1998)

    Article  Google Scholar 

  45. D. Skowyra, K.L. Craig, M. Tyers, S.J. Elledge, J.W. Harper, F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91(2), 209–219 (1997)

    Article  Google Scholar 

  46. P.T. Spellman, G. Sherlock, M.Q. Zhang, V.R. Iyer, K. Anders, M.B. Eisen, P.O. Brown, D. Botstein, B. Futcher, Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9(12), 3273–3297 (1998)

    Article  Google Scholar 

  47. F. Stegmeier, A. Amon, Closing mitosis: The functions of the Cdc14 phosphatase and its regulation. Annu. Rev. Genet. 38, 203–232 (2004)

    Article  Google Scholar 

  48. U. Surana, H. Robitsch, C. Price, T. Schuster, I. Fitch, B. Futcher, K. Nasmyth, The role of CDC28 and cyclins during mitosis in the budding yeast S. cerevisiae. Cell 65(1), 145–161 (1991)

    Article  Google Scholar 

  49. K. Tatebayashi, K. Tanaka, H.-Y. Yang, K. Yamamoto, Y. Matsushita, T. Tomida, M. Imai, H. Saito, Transmembrane mucins Hkr1 and Msb2 are putative osmosensorsy in the SHO1 branch of yeast HOG pathway. EMBO J. 26(15), 3521–3533 (2007)

    Article  Google Scholar 

  50. J.H. Toyn, A.L. Johnson, J.D. Donovan, W.M. Toone and L.H. Johnstone. The Swi5 transcription factor of Saccharomyces cerevisiae has a role in exit from mitosis through induction of the cdk-inhibitor Sic1 in telophase. Genet. 145(1) 85–96 (1997)

    Google Scholar 

  51. M. Tyers, B. Futcher, Far1 and Fus3 link the mating pheromone signal transduction pathway to three G1-phase Cdc28 kinase complexes. Mol. Cell. Biol. 13(9), 5659–5669 (1993)

    Google Scholar 

  52. M. Tyers, G. Tokiwa, B. Futcher, Comparison of the Saccharomyces cerevisiae G1 cyclins: Cln3 may be an upstream activator of Cln1, Cln2 and other cyclins. EMBO J. 12(5), 1955–1968 (1993)

    Google Scholar 

  53. R. Visintin, S. Prinz, A. Amon, CDC20 and CDH1: a family of substrate-specific activators of APC- dependent proteolysis. Sci. 278(5337), 460–463 (1997)

    Article  ADS  Google Scholar 

  54. P.J. Westfall, D.R. Ballon, J. Thorner, When the stress of your environment makes you go HOG wild. Sci. 306(5701), 1511–1512 (2004)

    Article  ADS  Google Scholar 

  55. G. Yaakov, A. Duch, M. Garcí-Rubio, J. Clotet, J. Jimenez, A. Aguilera, F. Posas, The stress-activated protein kinase Hog1 mediates S phase delay in response to osmostress. Mol. Biol. Cell 20(15), 3572–3582 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elahe Radmaneshfar .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Radmaneshfar, E. (2014). A Biological Overview of the Cell Cycle and its Response to Osmotic Stress and the \(\alpha \)-Factor. In: Mathematical Modelling of the Cell Cycle Stress Response. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-00744-1_2

Download citation

Publish with us

Policies and ethics