Towards Autonomous Soft Matter Systems pp 95-116 | Cite as
Interacting Droplets: Collective Dynamics
Chapter
First Online:
- 664 Downloads
Abstract
Interacting self propelled particles (SPPs) have implications in a broad range of systems. Living matter exhibits pattern formation due to interacting self propelled units at various scales, from human crowds, herds, bird flocks, and fish schools [1–3] to bacterial swarms [4], and even down to a molecular level in the dynamics of actin and tubulin filaments [5].
Keywords
Tracer Particle Droplet Diameter Hydrodynamic Interaction Mean Square Displacement Areal Density
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- 1.K. Bhattacharya, T. Vicsek, Collective decision making in cohesive flocks. New J. Phys. 12, 093019 (2010)Google Scholar
- 2.V. Guttal, I.D. Couzin, Social interactions, information use, and the evolution of collective migration. Proc. Natl. Acad. Sci. 107(37), 16172–16177 (2010)ADSCrossRefGoogle Scholar
- 3.P. Romanczuk, I.D. Couzin, L. Schimansky-Geier, Collective motion due to individual escape and pursuit response. Phys. Rev. Lett. 102, 010602 (2009)ADSCrossRefGoogle Scholar
- 4.H.P. Zhang, A. Be’er, E. Florin, H.L. Swinney, Collective motion and density fluctuations in bacterial colonies. Proc. Natl. Acad. Sci. 107(31), 13626–13630 (2010)ADSCrossRefGoogle Scholar
- 5.V. Schaller, C. Weber, C. Semmrich, E. Frey, A.R. Bausch, Polar patterns of driven filaments. Nature 467(7311), 73–77 (2010)ADSCrossRefGoogle Scholar
- 6.J.P. Hernandez-Ortiz, C.G. Stoltz, M.D. Graham, Transport and collective dynamics in suspensions of confined swimming particles. Phys. Rev. Lett. 95, 204501 (2005)ADSCrossRefGoogle Scholar
- 7.T. Ishikawa, T.J. Pedley, Coherent structures in monolayers of swimming particles. Phys. Rev. Lett. 100, 088103 (2008)ADSCrossRefGoogle Scholar
- 8.F. Ginelli, F. Peruani, M. Bär, H. Chaté, Large-scale collective properties of self-propelled rods. Phys. Rev. Lett. 104, 184502 (2010)ADSCrossRefGoogle Scholar
- 9.A. Najafi, R. Golestanian, Simple swimmer at low reynolds number: three linked spheres. Phys. Rev. E 69, 062901 (2004)ADSCrossRefGoogle Scholar
- 10.T. Ishikawa, M.P. Simmonds, T.J. Pedley, Hydrodynamic interaction of two swimming model micro-organisms. J. Fluid Mech. 568, 119–160 (2006)MathSciNetADSCrossRefzbMATHGoogle Scholar
- 11.E. Lauga, D. Bartolo, No many-scallop theorem: collective locomotion of reciprocal swimmers. Phys. Rev. E 78(3), 030901 (2008)ADSCrossRefGoogle Scholar
- 12.C.M. Pooley, G.P. Alexander, J.M. Yeomans, Hydrodynamic interaction between two swimmers at low reynolds number. Phys. Rev. Lett. 99, 228103 (2007)ADSCrossRefGoogle Scholar
- 13.R. A. Simha , S. Ramaswamy, Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles. Phys. Rev. Lett. 89, (2002)Google Scholar
- 14.J. Toner, Y. Tu, Long-Range order in a two-dimensional dynamical XY model: how birds fly together. Phys. Rev. Lett. 75, 4326 (1995)ADSCrossRefGoogle Scholar
- 15.I.S. Aranson, L.S. Tsimring, Pattern formation of microtubules and motors: inelastic interaction of polar rods. Phys. Rev. E 71, 050901 (2005)ADSCrossRefGoogle Scholar
- 16.J. Toner, Y. Tu, S. Ramaswamy, Hydrodynamics and phases of flocks. Ann. Phys. 318, 170–244 (2005)MathSciNetADSCrossRefzbMATHGoogle Scholar
- 17.A. Baskaran, M.C. Marchetti, Statistical mechanics and hydrodynamics of bacterial suspensions. Proc. Natl. Acad. Sci. 106(37), 15567–15572 (2009)ADSCrossRefGoogle Scholar
- 18.T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226 (1995)ADSCrossRefGoogle Scholar
- 19.C. Dombrowski, L. Cisneros, S. Chatkaew, R. E. Goldstein, J. O. Kessler, Self-concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93, (2004)Google Scholar
- 20.K. Drescher et al., Dancing volvox: hydrodynamic bound states of swimming algae. Phys. Rev. Lett. 102, 1–4 (2009)CrossRefGoogle Scholar
- 21.K.C. Leptos, J.S. Guasto, J.P. Gollub, A.I. Pesci, R.E. Goldstein, Dynamics of enhanced tracer diffusion in suspensions of swimming eukaryotic microorganisms. Phys. Rev. Lett. 103, 198103 (2009)ADSCrossRefGoogle Scholar
- 22.X. L. Wu , A. Libchaber, Particle diffusion in a quasi-two-dimensional bacterial bath. Phys. Rev. Lett. 84, (2000)Google Scholar
- 23.J. Dunkel, V.B. Putz, I.M. Zaid, J.M. Yeomans, Swimmer-tracer scattering at low Reynolds number. Soft Matter 6(17), 4268 (2010)ADSCrossRefGoogle Scholar
- 24.A.P. Berke, L. Turner, H.C. Berg, E. Lauga, Hydrodynamic attraction of swimming microorganisms by surfaces. Phys. Rev. Lett. 101, 038102 (2008)ADSCrossRefGoogle Scholar
- 25.I.H. Riedel, K. Kruse, J. Howard, A self-organized vortex array of hydrodynamically entrained sperm cells. Science 309, 300–303 (2005)ADSCrossRefGoogle Scholar
- 26.P. Galajda, J. Keymer, P. Chaikin, R. Austin, A wall of funnels concentrates swimming bacteria. J. Bacteriol. 189, 8704–8707 (2007)CrossRefGoogle Scholar
- 27.M.B. Wan, C.J.O. Reichhardt, Z. Nussinov, C. Reichhardt, Rectification of swimming bacteria and self-driven particle systems by arrays of asymmetric barriers. Phys. Rev. Lett. 101, 018102 (2008)ADSCrossRefGoogle Scholar
- 28.R.S. Shaw, N. Packard, M. Schröter, H.L. Swinney, Geometry-induced asymmetric diffusion. Proc. Natl. Acad. Sci. 104, 9580–9584 (2007)ADSCrossRefzbMATHGoogle Scholar
- 29.A. Taloni, F. Marchesoni, Single-file diffusion on a periodic substrate. Phys. Rev. Lett. 96, 020601 (2006)ADSCrossRefGoogle Scholar
- 30.K. Nelissen, V.R. Misko, F.M. Peeters, Single-file diffusion of interacting particles in a one-dimensional channel. Europhys. Lett. (EPL), 80, 56004 (2007)Google Scholar
- 31.A. Sokolov, I.S. Aranson, Reduction of viscosity in suspension of swimming bacteria. Phys. Rev. Lett. 103(14), 148101 (2009)ADSCrossRefGoogle Scholar
- 32.S. Rafaï, L. Jibuti, P. Peyla, Effective viscosity of microswimmer suspensions. Phys. Rev. Lett. 104, 098102 (2010)ADSCrossRefGoogle Scholar
- 33.M. Engstler, T. Pfohl, S. Herminghaus, M. Boshart, G. Wiegertjes, N. Heddergott, P. Overath, Hydrodynamic flow-mediated protein sorting on the cell surface of trypanosomes. Cell 131 (2007)Google Scholar
Copyright information
© Springer International Publishing Switzerland 2014