Interacting Droplets: Collective Dynamics

  • Shashi ThutupalliEmail author
Part of the Springer Theses book series (Springer Theses)


Interacting self propelled particles (SPPs) have implications in a broad range of systems. Living matter exhibits pattern formation due to interacting self propelled units at various scales, from human crowds, herds, bird flocks, and fish schools [1–3] to bacterial swarms [4], and even down to a molecular level in the dynamics of actin and tubulin filaments [5].


Tracer Particle Droplet Diameter Hydrodynamic Interaction Mean Square Displacement Areal Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    K. Bhattacharya, T. Vicsek, Collective decision making in cohesive flocks. New J. Phys. 12, 093019 (2010)Google Scholar
  2. 2.
    V. Guttal, I.D. Couzin, Social interactions, information use, and the evolution of collective migration. Proc. Natl. Acad. Sci. 107(37), 16172–16177 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    P. Romanczuk, I.D. Couzin, L. Schimansky-Geier, Collective motion due to individual escape and pursuit response. Phys. Rev. Lett. 102, 010602 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    H.P. Zhang, A. Be’er, E. Florin, H.L. Swinney, Collective motion and density fluctuations in bacterial colonies. Proc. Natl. Acad. Sci. 107(31), 13626–13630 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    V. Schaller, C. Weber, C. Semmrich, E. Frey, A.R. Bausch, Polar patterns of driven filaments. Nature 467(7311), 73–77 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    J.P. Hernandez-Ortiz, C.G. Stoltz, M.D. Graham, Transport and collective dynamics in suspensions of confined swimming particles. Phys. Rev. Lett. 95, 204501 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    T. Ishikawa, T.J. Pedley, Coherent structures in monolayers of swimming particles. Phys. Rev. Lett. 100, 088103 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    F. Ginelli, F. Peruani, M. Bär, H. Chaté, Large-scale collective properties of self-propelled rods. Phys. Rev. Lett. 104, 184502 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    A. Najafi, R. Golestanian, Simple swimmer at low reynolds number: three linked spheres. Phys. Rev. E 69, 062901 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    T. Ishikawa, M.P. Simmonds, T.J. Pedley, Hydrodynamic interaction of two swimming model micro-organisms. J. Fluid Mech. 568, 119–160 (2006)MathSciNetADSCrossRefzbMATHGoogle Scholar
  11. 11.
    E. Lauga, D. Bartolo, No many-scallop theorem: collective locomotion of reciprocal swimmers. Phys. Rev. E 78(3), 030901 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    C.M. Pooley, G.P. Alexander, J.M. Yeomans, Hydrodynamic interaction between two swimmers at low reynolds number. Phys. Rev. Lett. 99, 228103 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    R. A. Simha , S. Ramaswamy, Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles. Phys. Rev. Lett. 89, (2002)Google Scholar
  14. 14.
    J. Toner, Y. Tu, Long-Range order in a two-dimensional dynamical XY model: how birds fly together. Phys. Rev. Lett. 75, 4326 (1995)ADSCrossRefGoogle Scholar
  15. 15.
    I.S. Aranson, L.S. Tsimring, Pattern formation of microtubules and motors: inelastic interaction of polar rods. Phys. Rev. E 71, 050901 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    J. Toner, Y. Tu, S. Ramaswamy, Hydrodynamics and phases of flocks. Ann. Phys. 318, 170–244 (2005)MathSciNetADSCrossRefzbMATHGoogle Scholar
  17. 17.
    A. Baskaran, M.C. Marchetti, Statistical mechanics and hydrodynamics of bacterial suspensions. Proc. Natl. Acad. Sci. 106(37), 15567–15572 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    C. Dombrowski, L. Cisneros, S. Chatkaew, R. E. Goldstein, J. O. Kessler, Self-concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93, (2004)Google Scholar
  20. 20.
    K. Drescher et al., Dancing volvox: hydrodynamic bound states of swimming algae. Phys. Rev. Lett. 102, 1–4 (2009)CrossRefGoogle Scholar
  21. 21.
    K.C. Leptos, J.S. Guasto, J.P. Gollub, A.I. Pesci, R.E. Goldstein, Dynamics of enhanced tracer diffusion in suspensions of swimming eukaryotic microorganisms. Phys. Rev. Lett. 103, 198103 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    X. L. Wu , A. Libchaber, Particle diffusion in a quasi-two-dimensional bacterial bath. Phys. Rev. Lett. 84, (2000)Google Scholar
  23. 23.
    J. Dunkel, V.B. Putz, I.M. Zaid, J.M. Yeomans, Swimmer-tracer scattering at low Reynolds number. Soft Matter 6(17), 4268 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    A.P. Berke, L. Turner, H.C. Berg, E. Lauga, Hydrodynamic attraction of swimming microorganisms by surfaces. Phys. Rev. Lett. 101, 038102 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    I.H. Riedel, K. Kruse, J. Howard, A self-organized vortex array of hydrodynamically entrained sperm cells. Science 309, 300–303 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    P. Galajda, J. Keymer, P. Chaikin, R. Austin, A wall of funnels concentrates swimming bacteria. J. Bacteriol. 189, 8704–8707 (2007)CrossRefGoogle Scholar
  27. 27.
    M.B. Wan, C.J.O. Reichhardt, Z. Nussinov, C. Reichhardt, Rectification of swimming bacteria and self-driven particle systems by arrays of asymmetric barriers. Phys. Rev. Lett. 101, 018102 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    R.S. Shaw, N. Packard, M. Schröter, H.L. Swinney, Geometry-induced asymmetric diffusion. Proc. Natl. Acad. Sci. 104, 9580–9584 (2007)ADSCrossRefzbMATHGoogle Scholar
  29. 29.
    A. Taloni, F. Marchesoni, Single-file diffusion on a periodic substrate. Phys. Rev. Lett. 96, 020601 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    K. Nelissen, V.R. Misko, F.M. Peeters, Single-file diffusion of interacting particles in a one-dimensional channel. Europhys. Lett. (EPL), 80, 56004 (2007)Google Scholar
  31. 31.
    A. Sokolov, I.S. Aranson, Reduction of viscosity in suspension of swimming bacteria. Phys. Rev. Lett. 103(14), 148101 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    S. Rafaï, L. Jibuti, P. Peyla, Effective viscosity of microswimmer suspensions. Phys. Rev. Lett. 104, 098102 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    M. Engstler, T. Pfohl, S. Herminghaus, M. Boshart, G. Wiegertjes, N. Heddergott, P. Overath, Hydrodynamic flow-mediated protein sorting on the cell surface of trypanosomes. Cell 131 (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of PhysicsPrinceton UniversityPrincetonUSA

Personalised recommendations