Advertisement

Swimming Droplets: Artificial Squirmers

  • Shashi ThutupalliEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Self propelled particles (SPPs) typically carry their own energy and are not propelled simply by the thermal buffeting due to the environment. As non-equilibrium entities, they are not restricted to classical equilibrium constraints such as the fluctuation-dissipation theorem and detailed balance. Consequently, SPPs are simple model systems to study the behavior of non-equilibrium phenomena, in particular the mechanics and statistics of active matter.

Keywords

Flow Field Particle Image Velocimetry Surface Velocity Malonic Acid Droplet Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H.C. Berg, R.A. Anderson, Bacteria swim by rotating their flagellar filaments. Nature 245, 380–2 (1973)ADSCrossRefGoogle Scholar
  2. 2.
    B.M. Friedrich, I.H. Riedel-Kruse, J. Howard, F. Jülicher, High-precision tracking of sperm swimming fine structure provides strong test of resistive force theory. J. Exp. Biol. 213, 1226–1234 (2010)CrossRefGoogle Scholar
  3. 3.
    D. Bray, Cell Movements (Garland, New York, 2000)Google Scholar
  4. 4.
    J.A. Rodríguez, Propulsion of African trypanosomes is driven by bihelical waves with alternating chirality separated by kinks. Proc. Nat. Acad. Sci. USA 106, 19322–19327 (2009)Google Scholar
  5. 5.
    K.M. Ehlers et al., D. Samuel, H.C. Berg, R. Montgomery, Do cyanobacteria swim using traveling surface waves? Proc. Nat. Acad. Sci. USA 93, 8340–8343 (1996)Google Scholar
  6. 6.
    T. Ishikawa, M. Hota, Interaction of two swimming Paramecia. J. Exp. Bio. 209, 4452–4463 (2006)CrossRefGoogle Scholar
  7. 7.
    K. Drescher et al., Dancing volvox: hydrodynamic bound states of swimming algae. Phys. Rev. Lett. 102, 1–4 (2009)CrossRefGoogle Scholar
  8. 8.
    D. Yamada, T. Hondou, M. Sano, Coherent dynamics of an asymmetric particle in a vertically vibrating bed. Phys. Rev. E 67, 040301 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    A. Kudrolli, G. Lumay, D. Volfson, L.S. Tsimring, Swarming and swirling in self-propelled polar granular rods. Phys. Rev. Lett. 100, 058001 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    J. Deseigne, O. Dauchot, H. Chaté, Collective motion of vibrated polar disks. Phys. Rev. Lett. 105(9), 098001 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Z.S. Khan, A. Steinberger, R. Seemann, S. Herminghaus, Wet granular walkers and climbers. New J. Phys. 13, 053041 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    F.D.D. Santos, T. Ondarçuhu, Free-Running droplets. Phys. Rev. Lett. 75, 2972 (1995)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Sumino, N. Magome, T. Hamada, K. Yoshikawa, Self-running droplet: Emergence of regular motion from nonequilibrium noise. Phys. Rev. Lett. 94, 068301 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    H. Linke, B.J. Alemán, L.D. Melling, M.J. Taormina, M.J. Francis, C.C. Dow-Hygelund, V. Narayanan, R.P. Taylor, A. Stout, Self-propelled Leidenfrost droplets. Phys. Rev. Lett. 96, 154502 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    G. Lagubeau, M.L. Merrer, C. Clanet, D. Quere, Leidenfrost on a ratchet. Nat. Phys. 7, 395–398 (May 2011)CrossRefGoogle Scholar
  16. 16.
    N.J. Suematsu, Y. Miyahara, Y. Matsuda, S. Nakata, Self-motion of a benzoquinone disk coupled with a redox reaction. J. Phys. Chem. C 114(31), 13340–13343 (2010)CrossRefGoogle Scholar
  17. 17.
    K. Iida, N.J. Suematsu, Y. Miyahara, H. Kitahata, M. Nagayama, S. Nakata, Experimental and theoretical studies on the self-motion of a phenanthroline disk coupled with complex formation. Phys. Chem. Chem. Phys. 12(7), 1557 (2010)CrossRefGoogle Scholar
  18. 18.
    Y. Hayashima, M. Nagayama, Y. Doi, S. Nakata, M. Kimura, M. Iida, Self-motion of a camphoric acid boat sensitive to the chemical environment. Phys. Chem. Chem. Phys. 4, 1386–1392 (2002)CrossRefGoogle Scholar
  19. 19.
    J.R. Howse, R.A.L. Jones, A.J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, Self-motile colloidal particles: From directed propulsion to random walk. Phys. Rev. Lett. 99, 048102 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    R. Dreyfus, J. Baudry, M.L. Roper, M. Fermigier, H.A. Stone, J. Bibette, Microscopic artificial swimmers. Nature 437, 862–865 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    T. Toyota, N. Maru, M.M. Hanczyc, T. Ikegami, T. Sugawara, Self-propelled oil droplets consuming “Fuel” surfactant. J. Am. Chem. Soc. 131, 5012–5013 (2009)CrossRefGoogle Scholar
  22. 22.
    A. Diguet, R. Guillermic, N. Magome, A. Saint-Jalmes, Y. Chen, K. Yoshikawa, D. Baigl, Photomanipulation of a droplet by the chromocapillary effect. Angew. Chem. Int. Ed. 48, 9281–9284 (2009)CrossRefGoogle Scholar
  23. 23.
    J.R. Blake, A spherical envelope approach to ciliary propulsion. J. Fluid Mech. 46, 199 (1971)ADSCrossRefzbMATHGoogle Scholar
  24. 24.
    M.T. Downton, H. Stark, Simulation of a model microswimmer. J. Phys.: Condens. Matter 21, 204101 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    J.G. Santiago, S.T. Wereley, C.D. Meinhart, D.J. Beebe, R.J. Adrian, A particle image velocimetry system for microfluidics. Exp. Fluids 25(4), 316–319 (1998)CrossRefGoogle Scholar
  26. 26.
    W. Thielicke, E. Stamhuis, PIVlab—time-resolved particle image velocimetry (PIV) tool. http://www.mathworks.com/matlabcentral/fileexchange/27659-pivlab-time-resolved-particle-image-velocimetry-piv-tool
  27. 27.
    M.D. Levan, J. Newman, The effect of surfactant on the terminal and interfacial velocities of a bubble or drop. AIChE J. 22, 695–701 (1976)CrossRefGoogle Scholar
  28. 28.
    M. Levan, Motion of a droplet with a newtonian interface. J. Colloid Interface Sci. 83, 11–17 (1981)CrossRefGoogle Scholar
  29. 29.
    F. Jülicher, J. Prost, Generic theory of colloidal transport. Eur. Phys. J. E 29, 27–36 (2009)CrossRefGoogle Scholar
  30. 30.
    A.T. Chwang, T.Y. Wu, Hydromechanics of low-reynolds-number flow. Part 2. Singularity method for Stokes flows. J. Fluid Mech. 67, 787 (2006)MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    H. Kitahata, N. Yoshinaga, K.H. Nagai, Y. Sumino, Spontaneous motion of a droplet coupled with a chemical wave. Phys. Rev. E, textbf84, 013101, arXiv:1012.2755v1Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of PhysicsPrinceton UniversityPrincetonUSA

Personalised recommendations