Phase Contrast X-Ray Imaging of Lipid Membranes

  • Shashi ThutupalliEmail author
Part of the Springer Theses book series (Springer Theses)


The investigations of membranes and associated processes in Chapters 2 and 3 clearly point to very important phenomena at the nanoscale.


Lipid Bilayer Microfluidic Channel Phase Contrast Image Lipid Monolayer Divergent Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J.C. Weaver, Electroporation of biological membranes from multicellular to nano scales. IEEE Trans. Dielectr. Electri. Insul. 10, 754–768 (2003)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Z. Vasilkoski, A. Esser, T. Gowrishankar, J. Weaver, Membrane electroporation: the absolute rate equation and nanosecond time scale pore creation. Phys. Rev. E 74, 1–12 (2006)Google Scholar
  3. 3.
    T.D. Xie, T.Y. Tsong, Study of mechanisms of electric field-induced DNA transfection III. Biophys. J. 63, 28–34 (1992)ADSCrossRefGoogle Scholar
  4. 4.
    R. Egerton, Physical Principles of Electron Microscopy: An Introduction to TEM, SEM, and AEM (Springer, New York, 2005)Google Scholar
  5. 5.
    B. Huang, H. Babcock, X. Zhuang, Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143, 1047–1058 (2010)CrossRefGoogle Scholar
  6. 6.
    J. Lippincott-Schwartz, S. Manley, Putting super-resolution fluorescence microscopy to work. Nat. Meth. 6, 21–23 (2009)Google Scholar
  7. 7.
    C. Bergemann, H. Keymeulen, J.F. van der Veen, Focusing X-ray beams to nanometer dimensions. Phys. Rev. Lett. 91, 204801 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    C. Schroer, B. Lengeler, Focusing hard X-rays to nanometer dimensions by adiabatically focusing lenses. Phys. Rev. Lett. 94 054802 (2005)Google Scholar
  9. 9.
    C.G. Schroer, P. Boye, J.M. Feldkamp, J. Patommel, A. Schropp, A. Schwab, S. Stephan, M. Burghammer, S. Schöder, C. Riekel, Coherent X-ray diffraction imaging with nanofocused illumination. Phys. Rev. Lett. 101(9), 090801 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    A. Beerlink, M. Mell, M. Tolkiehn, T. Salditt, Hard X-ray phase contrast imaging of black lipid membranes. AIP Conf. Proc. 1236, 220 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    A. Beerlink, Black lipid membranes studied by X-ray phase contrast imaging, Göttingen Series in X-ray Physics, vol. 1 (Universitätsverlag Göttingen, 2011)Google Scholar
  12. 12.
    O. Hignette, Submicron focusing of hard X-rays with reflecting surfaces at the ESRF, in Proceedings of SPIE, San Diego, 2001, pp. 105–116Google Scholar
  13. 13.
    A. Rommeveaux, Mirror metrology and bender characterization at ESRF, in Proceedings of SPIE, San Diego, 2005, pp. 59210N–59210N-8Google Scholar
  14. 14.
    J. Labiche, O. Mathon, S. Pascarelli, M.A. Newton, G.G. Ferre, C. Curfs, G. Vaughan, A. Homs, D.F. Carreiras, The fast readout low noise camera as a versatile X-ray detector for time resolved dispersive extended X-ray absorption fine structure and diffraction studies of dynamic problems in materials science, chemistry, and catalysis. Rev. Sci. Instrum. 78 (2007)Google Scholar
  15. 15.
    A. Cecilia, A. Rack, D. Pelliccia, P.A. Douissard, T. Martin, M. Couchaud, K. Dupre, T. Baumbach, Studies of LSO:Tb radio-luminescence properties using white beam hard X-ray synchrotron irradiation. Radiat. Eff. Defects Solids 164, 517–522 (2009)Google Scholar
  16. 16.
    T. Martin, P. Douissard, M. Couchaud, A. Cecilia, T. Baumbach, K. Dupre, A. Rack, LSO-based single crystal film scintillator for synchrotron-based hard X-ray micro-imaging. IEEE Trans. Nucl. Sci. 56, 1412–1418 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    L.G. Parratt, Surface studies of solids by total reflection of X-rays. Phys. Rev. 95, 359 (1954)ADSCrossRefGoogle Scholar
  18. 18.
    J. Als-Nielsen, D. McMorrow, Elements of Modern X-ray Physics, 1st edn. (Wiley 2001)Google Scholar
  19. 19.
    P. Cloetens, Contribution to Phase Contrast Imaging Reconstruction and Tomography with Hard Synchrotron Radiation. Ph.D., Vrije Universiteit Brussel, 1999.Google Scholar
  20. 20.
    D. Paganin, Coherent X-ray Optics (Oxford University Press, USA, 2006)CrossRefGoogle Scholar
  21. 21.
    K.A. Nugent, Coherent methods in the X-ray sciences. Adv. Phys. 59(1), 1 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th edn. (Cambridge University Press, Cambridge, 1999)Google Scholar
  23. 23.
    P. Cloetens, R. Barrett, J. Baruchel, J. Guigay, M. Schlenker, Phase objects in synchrotron radiation hard X-ray imaging. J. Phys. D: Appl. Phys. 29, 133–146 (1996)ADSCrossRefGoogle Scholar
  24. 24.
    J. Cowley, Diffraction Physics, 3rd edn., North-Holland Personal Library, Elsevier (1995)Google Scholar
  25. 25.
    A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, I. Schelokov, On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation. Rev. Sci. Instrum. 66(12), 5486 (1995)ADSCrossRefGoogle Scholar
  26. 26.
    R. Mokso, P. Cloetens, E. Maire, W. Ludwig, J. Buffière, Nanoscale zoom tomography with hard X-rays using Kirkpatrick-Baez optics. Appl. Phys. Lett. 90(14), 144104 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    P. Bleuet, P. Cloetens, P. Gergaud, D. Mariolle, N. Chevalier, R. Tucoulou, J. Susini, A. Chabli, A hard X-ray nanoprobe for scanning and projection nanotomography. Rev. Sci. Instrum. 80(5), 056101 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    C. Fuhse, X-ray waveguides and waveguide-based lensless imaging. Ph.D. thesis, 2006Google Scholar
  29. 29.
    S. Lagomarsino, A. Cedola, P. Cloetens, S.D. Fonzo, W. Jark, G. Soullié, C. Riekel, Phase contrast hard X-ray microscopy with submicron resolution. Appl. Phys. Lett. 71(18), 2557 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    S.D. Fonzo, W. Jark, G. Soullié, A. Cedola, S. Lagomarsino, P. Cloetens, C. Riekel, Submicrometre resolution phase-contrast radiography with the beam from an X-ray waveguide. J. Synchrotron Radiat. 5, 376–378 (1998)CrossRefGoogle Scholar
  31. 31.
    C. Raven, A. Snigirev, I. Snigireva, P. Spanne, A. Souvorov, V. Kohn, Phase-contrast microtomography with coherent high-energy synchrotron X-rays. Appl. Phys. Lett. 69(13), 1826 (1996)ADSCrossRefGoogle Scholar
  32. 32.
    B. Lengeler, C.G. Schroer, M. Richwin, J. Tümmler, M. Drakopoulos, A. Snigirev, I. Snigireva, A microscope for hard X-rays based on parabolic compound refractive lenses. Appl. Phys. Lett. 74(26), 3924 (1999)ADSCrossRefGoogle Scholar
  33. 33.
    C.G. Schroer, J. Meyer, M. Kuhlmann, B. Benner, T.F. Günzler, B. Lengeler, C. Rau, T. Weitkamp, A. Snigirev, I. Snigireva, Nanotomography based on hard X-ray microscopy with refractive lenses. Appl. Phys. Lett. 81(8), 1527 (2002)ADSCrossRefGoogle Scholar
  34. 34.
    S. Mayo, T. Davis, T. Gureyev, P. Miller, D. Paganin, A. Pogany, A. Stevenson, S. Wilkins, X-ray phase-contrast microscopy and microtomography. Opt. Express 11(19), 2289–2302 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    T. Tuohimaa, M. Otendal, H.M. Hertz, Phase-contrast X-ray imaging with a liquid-metal-jet-anode microfocus source. Appl. Phys. Lett. 91(7), 074104 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    M. Otendal, T. Tuohimaa, U. Vogt, H.M. Hertz, A 9 keV electron-impact liquid-gallium-jet X-ray source. Rev. Sci. Instrum. 79(1), 016102 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    M. Mell, Phase Contrast Imaging of Lipid Bilayer Model Membranes using Hard X-Rays. Diploma, Göttingen University, 2009.Google Scholar
  38. 38.
    J.C. Lagarias, J.A. Reeds, M.H. Wright, P.E. Wright, Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J. Optim. 9, 112–147 (1998)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of PhysicsPrinceton UniversityPrincetonUSA

Personalised recommendations