Advertisement

Electrostatic Interactions in Membrane Fusion

  • Shashi ThutupalliEmail author
Chapter
  • 643 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Presynaptic nerve terminals convert electrical signals into chemical signals that target other neurons or somatic cells.

Keywords

Synaptic Vesicle Membrane Fusion Snare Protein Anionic Lipid Charged Lipid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A.T. Brunger, K. Weninger, M. Bowen, S. Chu, Single-molecule studies of the neuronal SNARE fusion machinery. Annu. Rev. Biochem. 78, 903–928 (2009)Google Scholar
  2. 2.
    R. Jahn, R.H. Scheller, SNAREs-engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7, 631–643 (2006)Google Scholar
  3. 3.
    E.R. Chapman, How does synaptotagmin trigger neurotransmitter release? Annu. Rev. Biochem. 77, 615–641 (2008)Google Scholar
  4. 4.
    S. Martens, H.T. McMahon, Mechanisms of membrane fusion: disparate players and common principles. Nat. Rev. Mol. Cell Biol. 9, 543–556 (2008)Google Scholar
  5. 5.
    A. Radhakrishnan, A. Stein, R. Jahn, D. Fasshauer, The \({\rm {Ca}}^{2+}\) affinity of synaptotagmin 1 is markedly increased by a specific interaction of its C2B domain with phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem. 284, 25749–25760 (2009)Google Scholar
  6. 6.
    I. Fernandez, D. Araç, J. Ubach, S.H. Gerber, O. Shin, Y. Gao, R.G. Anderson, T.C. Südhof, J. Rizo, Three-dimensional structure of the synaptotagmin 1 C2B-domain: synaptotagmin 1 as a phospholipid binding machine. Neuron, 32 (2001)Google Scholar
  7. 7.
    L. Li, O. Shin, J. Rhee, D. Araç, J. Rah, J. Rizo, T. Südhof, C. Rosenmund, Phosphatidylinositol phosphates as co-activators of \({\rm {Ca}}^{2+}\) binding to C2 domains of synaptotagmin 1, J. Biol. Chem. 281 (2006)Google Scholar
  8. 8.
    J. Bai, W.C. Tucker, E.R. Chapman, PIP2 increases the speed of response of synaptotagmin and steers its membrane-penetration activity toward the plasma membrane. Nat. Struct. Mol. Biol. 11, 36–44 (2004)Google Scholar
  9. 9.
    D. Araç, X. Chen, H.A. Khant, J. Ubach, S.J. Ludtke, M. Kikkawa, A.E. Johnson, W. Chiu, T.C. Südhof, J. Rizo, Close membrane-membrane proximity induced by \({\rm {Ca}}^{2+}\)-dependent multivalent binding of synaptotagmin-1 to phospholipids. Nat. Struct. Mol. Biol. 13, 209–217 (2006)Google Scholar
  10. 10.
    J.D. Gaffaney, F.M. Dunning, Z. Wang, E. Hui, E.R. Chapman, Synaptotagmin C2B domain regulates \({\rm {Ca}}^{2+}\)-triggered fusion in vitro: critical residues revealed by scanning alanine mutagenesis. J. Biol. Chem. 283(46), 31763–31775 (2008)Google Scholar
  11. 11.
    A. Bhalla, M.C. Chicka, W.C. Tucker, E.R. Chapman, \({\rm {Ca}}^{2+}\)-synaptotagmin directly regulates t-SNARE function during reconstituted membrane fusion. Nat. Struct. Mol. Biol. 13, 813–821 (2006)Google Scholar
  12. 12.
    D.Z. Herrick, S. Sterbling, K.A. Rasch, A. Hinderliter, D.S. Cafiso, Position of synaptotagmin I at the membrane interface: cooperative interactions of tandem C2 domains. Biochemistry 45, 9668–9674 (2006)Google Scholar
  13. 13.
    E. Hui, J. Bai, E.R. Chapman, \({\rm {Ca}}^{2+}\)-triggered simultaneous membrane penetration of the tandem C2-domains of synaptotagmin I. Biophys. J. 91, 1767–1777 (2006)Google Scholar
  14. 14.
    G. Schiavo, Q.M. Gu, G.D. Prestwich, T.H. Söllner, J.E. Rothman, Calcium-dependent switching of the specificity of phosphoinositide binding to synaptotagmin, in Proceedings of the National Academy of Sciences of the United States of America, vol. 93 (1996)Google Scholar
  15. 15.
    J. Rizo, X. Chen, D. Araç, Unraveling the mechanisms of synaptotagmin and SNARE function in neurotransmitter release. Trends Cell Biol. 16, 339–350 (2006)Google Scholar
  16. 16.
    S. Martens, M.M. Kozlov, H.T. McMahon, How synaptotagmin promotes membrane fusion. Science 316, 1205–1208 (2007)Google Scholar
  17. 17.
    E. Hui, C.P. Johnson, J. Yao, F.M. Dunning, E.R. Chapman, Synaptotagmin-mediated bending of the target membrane is a critical step in \({\rm {Ca}}^{2+}\)-regulated fusion. Cell 138, 709–721 (2009)Google Scholar
  18. 18.
    J. Bai, C. Wang, D.A. Richards, M.B. Jackson, E.R. Chapman, Fusion pore dynamics are regulated by synaptotagmin*t-SNARE interactions. Neuron 41, 921–942 (2004)Google Scholar
  19. 19.
    M. Vrljic, P. Strop, J.A. Ernst, R.B. Sutton, S. Chu, A.T. Brunger, Molecular mechanism of the synaptotagmin-SNARE interaction in \({\rm {Ca}}^{2+}\)-triggered vesicle fusion. Nat. Struct. Mol. Biol. 17, 318–324 (2010)Google Scholar
  20. 20.
    U.B. Choi, P. Strop, M. Vrljic, S. Chu, A.T. Brunger, K.R. Weninger, Single-molecule FRET-derived model of the synaptotagmin 1-SNARE fusion complex. Nat. Struct. Mol. Biol. 17, 325–331 (2010)Google Scholar
  21. 21.
    J.R. Schaub, X. Lu, B. Doneske, Y. Shin, J.A. McNew, Hemifusion arrest by complexin is relieved by \({\rm {Ca}}^{2+}\)-synaptotagmin I. Nat. Struct. Mol. Biol. 13, 748–750 (2006)Google Scholar
  22. 22.
    M. Xue, C. Ma, T.K. Craig, C. Rosenmund, J. Rizo, The janus-faced nature of the C(2)B domain is fundamental for synaptotagmin-1 function. Nat. Struct. Mol. Biol. 15, 827–835 (2008)Google Scholar
  23. 23.
    J. Tang, A. Maximov, O. Shin, H. Dai, J. Rizo, T.C. Südhof, A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis. Cell 126, 1175–1187 (2006)Google Scholar
  24. 24.
    T. Weber, B.V. Zemelman, J.A. McNew, B. Westermann, M. Gmachl, F. Parlati, T.H. Söllner, J.E. Rothman, SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998)Google Scholar
  25. 25.
    G. van den Bogaart, M.G. Holt, G. Bunt, D. Riedel, F.S. Wouters, R. Jahn, One SNARE complex is sufficient for membrane fusion. Nat. Struct. Mol. Biol. 17, 358–364 (2010)Google Scholar
  26. 26.
    A. Stein, A. Radhakrishnan, D. Riedel, D. Fasshauer, R. Jahn, Synaptotagmin activates membrane fusion through a \({\rm {Ca}}^{2+}\)-dependent trans interaction with phospholipids. Nat. Struct. Mol. Biol. 14, 904–911 (2007)Google Scholar
  27. 27.
    M.C. Chicka, E. Hui, H. Liu, E.R. Chapman, Synaptotagmin arrests the SNARE complex before triggering fast, efficient membrane fusion in response to \({\rm {Ca}}^{2+}\). Nat. Struct. Mol. Biol. 15, 827–835 (2008)Google Scholar
  28. 28.
    H. Lee, Y. Yang, Z. Su, C. Hyeon, T. Lee, H. Lee, D. Kweon, Y. Shin, T. Yoon, Dynamic \({\rm {Ca}}^{2+}\)-dependent stimulation of vesicle fusion by membrane-anchored synaptotagmin 1. Science 328(5979):760–763 (2010)Google Scholar
  29. 29.
    K.L. Lynch, R.R.L. Gerona, E.C. Larsen, R.F. Marcia, J.C. Mitchell, T.F.J. Martin, Synaptotagmin C2A loop 2 mediates \({\rm {Ca}}^{2+}\)-dependent SNARE interactions essential for \({\rm {Ca}}^{2+}\)-triggered vesicle exocytosis. Mol. Biol. Cell, 18, 4957–4968 (2007)Google Scholar
  30. 30.
    W.C. Tucker, T. Weber, E.R. Chapman, Reconstitution of \({\rm {Ca}}^{2+}\)-regulated membrane fusion by synaptotagmin and SNAREs. Science 304, 435–438 (2004)Google Scholar
  31. 31.
    J. Rhee, L.Y. Li, O. Shin, J. Rah, J. Rizo, T.C. Südhof, C. Rosenmund, Augmenting neurotransmitter release by enhancing the apparent \({\rm {Ca}}^{2+}\) affinity of synaptotagmin 1, in Proceedings of the National Academy of Sciences of the United States of America, vol. 102 (2005)Google Scholar
  32. 32.
    M. Margittai, D. Fasshauer, S. Pabst, R. Jahn, R. Langen, Homo- and heterooligomeric SNARE complexes studied by site-directed spin labeling. J. Biol. Chem. 276, 13169–13177 (2001)Google Scholar
  33. 33.
    D. Fasshauer, M. Margittai, A transient N-terminal interaction of SNAP-25 and syntaxin nucleates SNARE assembly. J. Biol. Chem. 279, 7613–7621 (2004)Google Scholar
  34. 34.
    A.V. Pobbati, A. Stein, D. Fasshauer, N- to C-terminal SNARE complex assembly promotes rapid membrane fusion. Science 313,673–676 (2006)Google Scholar
  35. 35.
    T.J. Siddiqui, O. Vites, A. Stein, R. Heintzmann, R. Jahn, D. Fasshauer, Determinants of synaptobrevin regulation in membranes. Mol. Biol. Cell, 18, 2037–2046 (2007)Google Scholar
  36. 36.
    F. Li, F. Pincet, E. Perez, W.S. Eng, T.J. Melia, J.E. Rothman, D. Tareste, Energetics and dynamics of SNAREpin folding across lipid bilayers. Nat. Struct. Mol. Biol. 14, 890–896 (2007)Google Scholar
  37. 37.
    D.J. James, C. Khodthong, J.A. Kowalchyk, T.F.J. Martin, Phosphatidylinositol 4,5-bisphosphate regulates SNARE-dependent membrane fusion. J. Cell Biol. 182, 355–366 (2008)Google Scholar
  38. 38.
    G. van den Bogaart, N. Hermans, V. Krasnikov, A.H. de Vries, B. Poolman, On the decrease in lateral mobility of phospholipids by sugars. Biophys. J. 92, 1598–1605 (2007)Google Scholar
  39. 39.
    C. Cerjan, R.E. Barnett, Viscosity dependence of a putative diffusion-limited reaction. J. Phys. Chem. 76, 1192–1195 (1972)CrossRefGoogle Scholar
  40. 40.
    J. Knight, A. Vishwanath, J. Brody, R. Austin, Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds. Phys. Rev. Lett. 80, 3863–3866 (1998)ADSCrossRefGoogle Scholar
  41. 41.
    S. Takamori, M. Holt, K. Stenius, E.A. Lemke, M. Gronborg, D. Riedel, H. Urlaub, S. Schenck, B. Brügger, P. Ringler, S.A. Müller, B. Rammner, F. Gräter, J.S. Hub, B.L.D. Groot, G. Mieskes, Y. Moriyama, J. Klingauf, H. Grubmüller, J. Heuser, F. Wieland, R. Jahn, Molecular anatomy of a trafficking organelle. Cell 127, 831–846 (2006)CrossRefGoogle Scholar
  42. 42.
    M. Holt, D. Riedel, A. Stein, C. Schuette, R. Jahn, Synaptic vesicles are constitutively active fusion machines that function independently of \({\rm {Ca}}^{2+}\). Curr. Biol. 18, 715–722 (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of PhysicsPrinceton UniversityPrincetonUSA

Personalised recommendations