Towards Autonomous Soft Matter Systems pp 29-48 | Cite as
Electrostatic Interactions in Membrane Fusion
Chapter
First Online:
- 643 Downloads
Abstract
Presynaptic nerve terminals convert electrical signals into chemical signals that target other neurons or somatic cells.
Keywords
Synaptic Vesicle Membrane Fusion Snare Protein Anionic Lipid Charged Lipid
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- 1.A.T. Brunger, K. Weninger, M. Bowen, S. Chu, Single-molecule studies of the neuronal SNARE fusion machinery. Annu. Rev. Biochem. 78, 903–928 (2009)Google Scholar
- 2.R. Jahn, R.H. Scheller, SNAREs-engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7, 631–643 (2006)Google Scholar
- 3.E.R. Chapman, How does synaptotagmin trigger neurotransmitter release? Annu. Rev. Biochem. 77, 615–641 (2008)Google Scholar
- 4.S. Martens, H.T. McMahon, Mechanisms of membrane fusion: disparate players and common principles. Nat. Rev. Mol. Cell Biol. 9, 543–556 (2008)Google Scholar
- 5.A. Radhakrishnan, A. Stein, R. Jahn, D. Fasshauer, The \({\rm {Ca}}^{2+}\) affinity of synaptotagmin 1 is markedly increased by a specific interaction of its C2B domain with phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem. 284, 25749–25760 (2009)Google Scholar
- 6.I. Fernandez, D. Araç, J. Ubach, S.H. Gerber, O. Shin, Y. Gao, R.G. Anderson, T.C. Südhof, J. Rizo, Three-dimensional structure of the synaptotagmin 1 C2B-domain: synaptotagmin 1 as a phospholipid binding machine. Neuron, 32 (2001)Google Scholar
- 7.L. Li, O. Shin, J. Rhee, D. Araç, J. Rah, J. Rizo, T. Südhof, C. Rosenmund, Phosphatidylinositol phosphates as co-activators of \({\rm {Ca}}^{2+}\) binding to C2 domains of synaptotagmin 1, J. Biol. Chem. 281 (2006)Google Scholar
- 8.J. Bai, W.C. Tucker, E.R. Chapman, PIP2 increases the speed of response of synaptotagmin and steers its membrane-penetration activity toward the plasma membrane. Nat. Struct. Mol. Biol. 11, 36–44 (2004)Google Scholar
- 9.D. Araç, X. Chen, H.A. Khant, J. Ubach, S.J. Ludtke, M. Kikkawa, A.E. Johnson, W. Chiu, T.C. Südhof, J. Rizo, Close membrane-membrane proximity induced by \({\rm {Ca}}^{2+}\)-dependent multivalent binding of synaptotagmin-1 to phospholipids. Nat. Struct. Mol. Biol. 13, 209–217 (2006)Google Scholar
- 10.J.D. Gaffaney, F.M. Dunning, Z. Wang, E. Hui, E.R. Chapman, Synaptotagmin C2B domain regulates \({\rm {Ca}}^{2+}\)-triggered fusion in vitro: critical residues revealed by scanning alanine mutagenesis. J. Biol. Chem. 283(46), 31763–31775 (2008)Google Scholar
- 11.A. Bhalla, M.C. Chicka, W.C. Tucker, E.R. Chapman, \({\rm {Ca}}^{2+}\)-synaptotagmin directly regulates t-SNARE function during reconstituted membrane fusion. Nat. Struct. Mol. Biol. 13, 813–821 (2006)Google Scholar
- 12.D.Z. Herrick, S. Sterbling, K.A. Rasch, A. Hinderliter, D.S. Cafiso, Position of synaptotagmin I at the membrane interface: cooperative interactions of tandem C2 domains. Biochemistry 45, 9668–9674 (2006)Google Scholar
- 13.E. Hui, J. Bai, E.R. Chapman, \({\rm {Ca}}^{2+}\)-triggered simultaneous membrane penetration of the tandem C2-domains of synaptotagmin I. Biophys. J. 91, 1767–1777 (2006)Google Scholar
- 14.G. Schiavo, Q.M. Gu, G.D. Prestwich, T.H. Söllner, J.E. Rothman, Calcium-dependent switching of the specificity of phosphoinositide binding to synaptotagmin, in Proceedings of the National Academy of Sciences of the United States of America, vol. 93 (1996)Google Scholar
- 15.J. Rizo, X. Chen, D. Araç, Unraveling the mechanisms of synaptotagmin and SNARE function in neurotransmitter release. Trends Cell Biol. 16, 339–350 (2006)Google Scholar
- 16.S. Martens, M.M. Kozlov, H.T. McMahon, How synaptotagmin promotes membrane fusion. Science 316, 1205–1208 (2007)Google Scholar
- 17.E. Hui, C.P. Johnson, J. Yao, F.M. Dunning, E.R. Chapman, Synaptotagmin-mediated bending of the target membrane is a critical step in \({\rm {Ca}}^{2+}\)-regulated fusion. Cell 138, 709–721 (2009)Google Scholar
- 18.J. Bai, C. Wang, D.A. Richards, M.B. Jackson, E.R. Chapman, Fusion pore dynamics are regulated by synaptotagmin*t-SNARE interactions. Neuron 41, 921–942 (2004)Google Scholar
- 19.M. Vrljic, P. Strop, J.A. Ernst, R.B. Sutton, S. Chu, A.T. Brunger, Molecular mechanism of the synaptotagmin-SNARE interaction in \({\rm {Ca}}^{2+}\)-triggered vesicle fusion. Nat. Struct. Mol. Biol. 17, 318–324 (2010)Google Scholar
- 20.U.B. Choi, P. Strop, M. Vrljic, S. Chu, A.T. Brunger, K.R. Weninger, Single-molecule FRET-derived model of the synaptotagmin 1-SNARE fusion complex. Nat. Struct. Mol. Biol. 17, 325–331 (2010)Google Scholar
- 21.J.R. Schaub, X. Lu, B. Doneske, Y. Shin, J.A. McNew, Hemifusion arrest by complexin is relieved by \({\rm {Ca}}^{2+}\)-synaptotagmin I. Nat. Struct. Mol. Biol. 13, 748–750 (2006)Google Scholar
- 22.M. Xue, C. Ma, T.K. Craig, C. Rosenmund, J. Rizo, The janus-faced nature of the C(2)B domain is fundamental for synaptotagmin-1 function. Nat. Struct. Mol. Biol. 15, 827–835 (2008)Google Scholar
- 23.J. Tang, A. Maximov, O. Shin, H. Dai, J. Rizo, T.C. Südhof, A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis. Cell 126, 1175–1187 (2006)Google Scholar
- 24.T. Weber, B.V. Zemelman, J.A. McNew, B. Westermann, M. Gmachl, F. Parlati, T.H. Söllner, J.E. Rothman, SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998)Google Scholar
- 25.G. van den Bogaart, M.G. Holt, G. Bunt, D. Riedel, F.S. Wouters, R. Jahn, One SNARE complex is sufficient for membrane fusion. Nat. Struct. Mol. Biol. 17, 358–364 (2010)Google Scholar
- 26.A. Stein, A. Radhakrishnan, D. Riedel, D. Fasshauer, R. Jahn, Synaptotagmin activates membrane fusion through a \({\rm {Ca}}^{2+}\)-dependent trans interaction with phospholipids. Nat. Struct. Mol. Biol. 14, 904–911 (2007)Google Scholar
- 27.M.C. Chicka, E. Hui, H. Liu, E.R. Chapman, Synaptotagmin arrests the SNARE complex before triggering fast, efficient membrane fusion in response to \({\rm {Ca}}^{2+}\). Nat. Struct. Mol. Biol. 15, 827–835 (2008)Google Scholar
- 28.H. Lee, Y. Yang, Z. Su, C. Hyeon, T. Lee, H. Lee, D. Kweon, Y. Shin, T. Yoon, Dynamic \({\rm {Ca}}^{2+}\)-dependent stimulation of vesicle fusion by membrane-anchored synaptotagmin 1. Science 328(5979):760–763 (2010)Google Scholar
- 29.K.L. Lynch, R.R.L. Gerona, E.C. Larsen, R.F. Marcia, J.C. Mitchell, T.F.J. Martin, Synaptotagmin C2A loop 2 mediates \({\rm {Ca}}^{2+}\)-dependent SNARE interactions essential for \({\rm {Ca}}^{2+}\)-triggered vesicle exocytosis. Mol. Biol. Cell, 18, 4957–4968 (2007)Google Scholar
- 30.W.C. Tucker, T. Weber, E.R. Chapman, Reconstitution of \({\rm {Ca}}^{2+}\)-regulated membrane fusion by synaptotagmin and SNAREs. Science 304, 435–438 (2004)Google Scholar
- 31.J. Rhee, L.Y. Li, O. Shin, J. Rah, J. Rizo, T.C. Südhof, C. Rosenmund, Augmenting neurotransmitter release by enhancing the apparent \({\rm {Ca}}^{2+}\) affinity of synaptotagmin 1, in Proceedings of the National Academy of Sciences of the United States of America, vol. 102 (2005)Google Scholar
- 32.M. Margittai, D. Fasshauer, S. Pabst, R. Jahn, R. Langen, Homo- and heterooligomeric SNARE complexes studied by site-directed spin labeling. J. Biol. Chem. 276, 13169–13177 (2001)Google Scholar
- 33.D. Fasshauer, M. Margittai, A transient N-terminal interaction of SNAP-25 and syntaxin nucleates SNARE assembly. J. Biol. Chem. 279, 7613–7621 (2004)Google Scholar
- 34.A.V. Pobbati, A. Stein, D. Fasshauer, N- to C-terminal SNARE complex assembly promotes rapid membrane fusion. Science 313,673–676 (2006)Google Scholar
- 35.T.J. Siddiqui, O. Vites, A. Stein, R. Heintzmann, R. Jahn, D. Fasshauer, Determinants of synaptobrevin regulation in membranes. Mol. Biol. Cell, 18, 2037–2046 (2007)Google Scholar
- 36.F. Li, F. Pincet, E. Perez, W.S. Eng, T.J. Melia, J.E. Rothman, D. Tareste, Energetics and dynamics of SNAREpin folding across lipid bilayers. Nat. Struct. Mol. Biol. 14, 890–896 (2007)Google Scholar
- 37.D.J. James, C. Khodthong, J.A. Kowalchyk, T.F.J. Martin, Phosphatidylinositol 4,5-bisphosphate regulates SNARE-dependent membrane fusion. J. Cell Biol. 182, 355–366 (2008)Google Scholar
- 38.G. van den Bogaart, N. Hermans, V. Krasnikov, A.H. de Vries, B. Poolman, On the decrease in lateral mobility of phospholipids by sugars. Biophys. J. 92, 1598–1605 (2007)Google Scholar
- 39.C. Cerjan, R.E. Barnett, Viscosity dependence of a putative diffusion-limited reaction. J. Phys. Chem. 76, 1192–1195 (1972)CrossRefGoogle Scholar
- 40.J. Knight, A. Vishwanath, J. Brody, R. Austin, Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds. Phys. Rev. Lett. 80, 3863–3866 (1998)ADSCrossRefGoogle Scholar
- 41.S. Takamori, M. Holt, K. Stenius, E.A. Lemke, M. Gronborg, D. Riedel, H. Urlaub, S. Schenck, B. Brügger, P. Ringler, S.A. Müller, B. Rammner, F. Gräter, J.S. Hub, B.L.D. Groot, G. Mieskes, Y. Moriyama, J. Klingauf, H. Grubmüller, J. Heuser, F. Wieland, R. Jahn, Molecular anatomy of a trafficking organelle. Cell 127, 831–846 (2006)CrossRefGoogle Scholar
- 42.M. Holt, D. Riedel, A. Stein, C. Schuette, R. Jahn, Synaptic vesicles are constitutively active fusion machines that function independently of \({\rm {Ca}}^{2+}\). Curr. Biol. 18, 715–722 (2008)Google Scholar
Copyright information
© Springer International Publishing Switzerland 2014