Microfluidic Membrane Networks

  • Shashi ThutupalliEmail author
Part of the Springer Theses book series (Springer Theses)


The miniaturization of technical components and machines has been one of the most powerful motors of advancement in both science and technology for the past four decades.


Microfluidic Channel Patch Clamp Amplifier Plateau Border Aqueous Droplet Molecular Building Block 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    H.S. Bennett, Will future measurement needs of the semiconductor industry be met? J. Res. Natl. Inst. Stand. Technol. 112, 25–38 (2007)CrossRefGoogle Scholar
  2. 2.
    G.E. Moore, Cramming more components onto integrated circuits. Proc. IEEE 86, 82–85 (1998)CrossRefGoogle Scholar
  3. 3.
    G.M. Altschuler, K.R. Willison, Development of free-energy-based models for chaperonin containing TCP-1 mediated folding of actin. J. Royal Soc., Inter. Royal Soc. 5, 1391–1408 (2008)CrossRefGoogle Scholar
  4. 4.
    E. Ben-Jacob, Bacterial self-organization: co-enhancement of complexification and adaptability in a dynamic environment. Philos. Trans. Series A, Math. Phys. Eng. Sci. 361, 1283–1312 (2003)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    P. Alivisatos, P.F. Barbara, A.W. Castleman, J. Chang, D.A. Dixon, M.L. Klein, G.L. McLendon, J.S. Miller, M.A. Ratner, P.J. Rossky, S.I. Stupp, M.E. Thompson, From molecules to materials: current trends and future directions. Adv. Mat. 10(16), 1297–1336 (1998)CrossRefGoogle Scholar
  6. 6.
    J.-M. Lehn, Toward self-organization and complex matter. Sci. (New York) 295, 2400–2403 (2002)Google Scholar
  7. 7.
    D.G. Kurth, P. Lehmann, M. Schütte, A route to hierarchical materials based on complexes of metallosupramolecular polyelectrolytes and amphiphiles. Proc. Nat. Acad. Sci. USA 97, 5704–5707 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    C.M. Drain, Self-organization of self-assembled photonic materials into functional devices: Photo-switched conductors. Proc. Nat. Acad. Sci. 99, 5178–5182 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    B. P. Binks, F. Adams, P. Walstra, B. W. Brooks, H. N. Richmond, Modern Aspects of Emulsion. 1st edn. (Royal Society of Chemistry, Cambridge, 1998)Google Scholar
  10. 10.
    P. Garstecki, I. Gitlin, W. DiLuzio, G.M. Whitesides, E. Kumacheva, H.A. Stone, Formation of monodisperse bubbles in a microfluidic flow-focusing device. Appl. Phys. Lett. 85(13), 2649 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    M. Seo, Z. Nie, S. Xu, P.C. Lewis, E. Kumacheva, Microfluidics: from dynamic lattices to periodic arrays of polymer disks. Langmuir: ACS J. Surf. Colloids 21, 4773–4775 (2005)CrossRefGoogle Scholar
  12. 12.
    C. Priest, S. Herminghaus, R. Seemann, Generation of monodisperse gel emulsions in a microfluidic device. Appl. Physi. Lett. 88(2), 024106 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    V. Chokkalingam, S. Herminghaus, R. Seemann, Self-synchronizing pairwise production of monodisperse droplets by microfluidic step emulsification. Appl. Phys. Lett. 93(25), 254101 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    G. M. Whitesides, The origins and the future of microfluidics. Nature 442, 368–373 (2006)Google Scholar
  15. 15.
    H. Song, D.L. Chen, R.F. Ismagilov, Reactions in droplets in microfluidic channels. Ang. Chem. Int. Ed. 45, 7336–7356 (2006)CrossRefGoogle Scholar
  16. 16.
    W. Drenckhan, S. Cox, G. Delaney, H. Holste, D. Weaire, N. Kern, Rheology of ordered foams: on the way to discrete microfluidics. Colloids Surf. A: Physicochemical Eng. Aspects 263, 52–64 (2005)CrossRefGoogle Scholar
  17. 17.
    M. J. Fuerstman, P. Garstecki, G. M. Whitesides, Coding/decoding and reversibility of droplet trains in microfluidic networks. Science (New York) 315, 828–32 (2007)Google Scholar
  18. 18.
    E. Surenjav, S. Herminghaus, C. Priest, R. Seemann, Discrete microfluidics: reorganizing droplet arrays at a bend. Appl. Phys. Lett. 95(15), 154104 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    K. Landfester, Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles. Ang. Chem. Int. Eng. 48, 4488–4507 (2009)Google Scholar
  20. 20.
    E. Surenjav, C. Priest, S. Herminghaus, and R. Seemann, Manipulation of gel emulsions by variable microchannel geometry. Lab. Chip. 9, 325–30 (2009)Google Scholar
  21. 21.
    O.S. Andersen, Ion movement through gramicidin A channels. Single-channel measurements at very high potentials. Bio. J. 41, 119–133 (1983)Google Scholar
  22. 22.
    M. A. Holden, D. Needham, H. Bayley, Functional bionetworks from nanoliter water droplets. J. Am. Chem. Soc. 129, 8650–8655 (2007)Google Scholar
  23. 23.
    A.J. Heron, J.R. Thompson, A.E. Mason, M.I. Wallace, Direct detection of membrane channels from gels using water-in-oil droplet bilayers. J. Am. Chem. Soc. 129(51), 16042–16047 (2007)CrossRefGoogle Scholar
  24. 24.
    E.B. Dussan, On the spreading of liquids on solid surfaces: static and dynamic contact lines. Ann. Rev. Fluid Mech. 11, 371–400 (1979)ADSCrossRefGoogle Scholar
  25. 25.
    J. P. Dilger, R. Benz, Optical and electrical properties of thin monoolein lipid bilayers. J. Membr. Biol. 85, 181–189 (1985)Google Scholar
  26. 26.
    W. Hwang, M. Holden, S. White, H. Bayley, Electrical behavior of droplet interface bilayer networks: experimental analysis and modeling. J. Am. Chem. Soc. 129, 11854–11864 (2007)Google Scholar
  27. 27.
    S.B. Hladky, D.A. Haydon, Ion transfer across lipid membranes in the presence of gramicidin A. Biochim. Biophys. Acta (BBA) 274, 294–312 (1972)CrossRefGoogle Scholar
  28. 28.
    J.C. Weaver, Electroporation of biological membranes from multicellular to nano scales. IEEE Trans. Dielectr. Electr. Insul. 10, 754–768 (2003)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Z. Vasilkoski, A. Esser, T. Gowrishankar, J. Weaver, Membrane electroporation: the absolute rate equation and nanosecond time scale pore creation. Phys. Rev. E 74, 1–12 (2006)Google Scholar
  30. 30.
    T.D. Xie, T.Y. Tsong, Study of mechanisms of electric field-induced DNA transfection III. Biophys. J. 63, 28–34 (1992)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of PhysicsPrinceton UniversityPrincetonUSA

Personalised recommendations