Introduction
Chapter
First Online:
- 644 Downloads
Abstract
The structural hierarchy, functional complexity and, most importantly, the delicate interplay between the two in complex open systems often lead to intriguing behaviour. In particular, quite unexpected collective phenomena are often observed when many similar units couple with one another, resulting in pattern formation, emergence, broken symmetries, and phase transitions.
Keywords
Lipid Bilayer Active Emulsion Spontaneous Oscillation Belousov Zhabotinsky Reaction Delicate Interplay
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- 1.M. Loose, E. Fischer-Friedrich, J. Ries, K. Kruse, P. Schwille, Spatial regulators for bacterial cell division self-organize into surface waves in vitro. Science 320, 789–792 (2008)ADSCrossRefGoogle Scholar
- 2.V. Gorodetskii, J. Lauterbach, H.H. Rotermund, J.H. Block, G. Ertl, Coupling between adjacent crystal planes in heterogeneous catalysis by propagating reaction-diffusion waves. Nature 370, 276–279 (1994)ADSCrossRefGoogle Scholar
- 3.S. Nettesheim, a von Oertzen, H.H. Rotermund, G. Ertl, Reaction diffusion patterns in the catalytic co-oxidation on Pt(110): front propagation and spiral waves. J. Chem. Phys. 98(12), 9977 (1993)ADSCrossRefGoogle Scholar
- 4.M. Nagy, Z. Akos, D. Biro, T. Vicsek, Hierarchical group dynamics in pigeon flocks. Nature 464, 890–893 (2010)ADSCrossRefGoogle Scholar
- 5.T. Gregor, W. Bialek, R.R. de Ruyter van Steveninck, D.W. Tank, E.F. Wieschaus, Diffusion and scaling during early embryonic pattern formation, in Proceedings of the National Academy of Sciences of the United States of America, vol. 102, Dec. 2005Google Scholar
- 6.E. Karsenti, Self-organization in cell biology: a brief history. Nat. Rev. Mol. Cell Biol. 9, 255–262 (2008)CrossRefGoogle Scholar
- 7.H. Meyer-Ortmanns, S. Thurner, Principles of Evolution from the Planck Epoch to Complex Multicellular Life. The Frontiers Collection (Springer, New York, 2011)Google Scholar
- 8.H.P. Zhang, A. Be’er, E. Florin, H.L. Swinney, Collective motion and density fluctuations in bacterial colonies. Proc. Nat. Acad. Sci. 107(31), 13626–13630 (2010)ADSCrossRefGoogle Scholar
- 9.D.S. Goodsell, The Machinery of Life (Springer New York, New York, 2009)CrossRefGoogle Scholar
- 10.T. Gregor, K. Fujimoto, N. Masaki, S. Sawai, The onset of collective behavior in social amoebae. Science 328, 1021–1025 (2010)ADSCrossRefGoogle Scholar
- 11.I.R. Epstein, J.A. Pojman, An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos (Oxford University Press, USA, 1998)Google Scholar
- 12.K.E. Daniels, O. Brausch, W. Pesch, E. Bodenschatz, Competition and bistability of ordered undulations and undulation chaos in inclined layer convection. Int. J. Fluid Mech. 597, 261–282 (2008)MathSciNetADSzbMATHGoogle Scholar
- 13.M. Loose, P. Schwille, Biomimetic membrane systems to study cellular organization. J. Struct. Biol. 168, 143–151 (2009)CrossRefGoogle Scholar
- 14.G. Karp, Cell and Molecular Biology: Concepts and Experiments (John Wiley, New York, 2008)Google Scholar
- 15.G.E. Moore, Cramming more components onto integrated circuits. Proc. IEEE 86, 82–85 (1998)CrossRefGoogle Scholar
- 16.W. Hwang, M. Holden, S. White, H. Bayley, Electrical behavior of droplet interface bilayer networks: experimental analysis and modeling. J. Am. Chem. Soc. 129, 11854–11864 (2007)Google Scholar
- 17.M.A. Holden, D. Needham, H. Bayley, Functional bionetworks from nanoliter water droplets. J. Am. Chem. Soc. 129, 8650–8655 (2007)Google Scholar
- 18.A.J. Heron, J.R. Thompson, A.E. Mason, M.I. Wallace, Direct detection of membrane channels from gels using water-in-oil droplet bilayers. J. Am. Chem. Soc. 129(51), 16042–16047 (2007)CrossRefGoogle Scholar
- 19.A.T. Brunger, K. Weninger, M. Bowen, S. Chu, Single-molecule studies of the neuronal SNARE fusion machinery. Annu. Rev. Biochem. 78, 903–928 (2009)Google Scholar
- 20.R. Jahn, R.H. Scheller, SNAREs-engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7, 631-643 (2006)Google Scholar
- 21.A.H. Bennett, H. Osterberg, H. Jupnik, O.W. Richards, Phase Microscopy (John Wiley & Sons, New York, 1951)Google Scholar
- 22.S.W. Hell, Far-field optical nanoscopy. Science 316, 1153–1158 (2007)ADSCrossRefGoogle Scholar
- 23.S. Ramaswamy, The mechanics and statistics of active matter. Ann. Rev. Condens. Matter Phys. 1, 323–345 (2010)ADSCrossRefGoogle Scholar
- 24.K. Kruse, F. Jülicher, Oscillations in cell biology. Curr. Opin. Cell Biol. 17, 239-342 (2005)Google Scholar
- 25.N. Kleckner, Mesoscale spatial patterning in the Escherichia coli min system: reaction-diffusion versus mechanical communication. Proc. Nat. Acad. Sci. 107, 8053–8054 (2010)ADSCrossRefGoogle Scholar
- 26.Philip twu’s research. http://www.prism.gatech.edu/~ptwu3/research.html
- 27.R.M. Harshey, Bacterial motility on a surface: many ways to a common goal. Annu. Rev. Microbiol. 57, 249–273 (2003)CrossRefGoogle Scholar
- 28.Murmur - today and tomorrow. http://www.todayandtomorrow.net/2009/02/02/murmur/
- 29.J. Toner, Y. Tu, S. Ramaswamy, Hydrodynamics and phases of flocks. Ann. Phys. 318, 170–244 (2005)MathSciNetADSCrossRefzbMATHGoogle Scholar
- 30.K. Bhattacharya, T. Vicsek, Collective decision making in cohesive flocks. New J. Phys. 12, 093019 (2010)Google Scholar
- 31.V. Schaller, C. Weber, C. Semmrich, E. Frey, A.R. Bausch, Polar patterns of driven filaments. Nature 467(7311), 73–77 (2010)ADSCrossRefGoogle Scholar
- 32.V. Guttal, I.D. Couzin, Social interactions, information use, and the evolution of collective migration. Proc. Nat. Acad. Sci. 107(37), 16172–16177 (2010)ADSCrossRefGoogle Scholar
- 33.P. Romanczuk, I.D. Couzin, L. Schimansky-Geier, Collective motion due to individual escape and pursuit response. Phys. Rev. Lett. 102, 010602 (2009)ADSCrossRefGoogle Scholar
Copyright information
© Springer International Publishing Switzerland 2014