Skip to main content

Multi-Disciplinary Constraint Design Optimization Based on Progressive Meta-Model Method for Vehicle Body Structure

  • Chapter
  • First Online:
Book cover Optimization of Structures and Components

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 43))

Abstract

In order to design a vehicle body with high strength and high stiffness, a multi-disciplinary design process should include careful consideration of multi-disciplinary design constraints to properly account for vehicle static stiffness (bending/torsional), durability, Noise/Vibration/Harshness (NVH), crash worthiness, light weight vehicle structure during the early stage of vehicle design process. With this approach, fast development of new vehicle body structures can be achieved with minimal number of iterations to match the conflicting design goals from each discipline. In the current research, a multi-disciplinary design optimization (MDO) based on a meta model is developed and refined to apply for the design of body structure. In an effort to apply the MDO for vehicle body structure, 4 phase procedures were established in the current research. In Phase I, a base model is created. In Phase II, an effect analysis is carried out. In Phase III, a meta model is created. Finally in Phase IV, using the optimization algorithm, the meta model created in Phase III is eventually refined through the process of optimization. In this research, static stiffness (bending / torsional), dynamic stiffness (1st torsion mode) were used for constrained conditions and the mass minimization was the object function for optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Londhe, A., Kalani, D., Ali, A.: A systematic approach for weight reduction of BIW panels through optimization. SAE Technical Paper 2010-01-0389 (2010)

    Google Scholar 

  2. Mundoa, D., Hadjitb, R., Dondersb, S., Brughmansb, M., Masb, P., Desmetc, W.: Simplified modelling of joints and beam-like structures for BIW optimization in a concept phase of the vehicle design process. Finite Elem. Anal. Des. 45(6–7), 456–462 (2009)

    Google Scholar 

  3. Jang, G.W., Choi, Y.M., Choi, G.J.: Discrete thickness optimization of an automobile body by using the continuous-variable-based method. J. Mech. Sci. Technol. 22, 41–49 (2008)

    Article  Google Scholar 

  4. Kim, B.J., Kim, M.S., Heo, S.J.: Aluminum space frame B.I.W. optimization considering multidisciplinary design constrains. Trans. KSAE 14(1), 1–7 (2006)

    Google Scholar 

  5. Kodiyalam, S., Yang, R.J., Gu, L., Tho, C.H.: Multidisciplinary design optimization of a vehicle system in a scalable, high performance computing environment. Struct. Multi. Optim. 26(3–4), 256–263 (2004)

    Google Scholar 

  6. Deb, A., Chou, C., Dutta, U., Gunti, S.: Practical versus RSM-based MDO in vehicle body design. SAE Technical Paper 2012–01-0098 (2012)

    Google Scholar 

  7. Gao, Y., Feng, H., Gao, D., Xu, R.: Multidisciplinary design optimization of a hatchback structure. SAE Technical Paper 2012–01-0780 (2012)

    Google Scholar 

  8. Yang, R., Chuang, C., Fu, Y.: An effective optimization strategy for structural weight reduction. SAE Technical Paper 2010–01-0647 (2010)

    Google Scholar 

  9. EasyDesign Training Guide: Institute of design optimization, Republic of Korea (2012)

    Google Scholar 

  10. Wang, J.G., Liu, G.R.: A point interpolation meshless method based on radial basis functions. Int. J. Numer. Methods Eng. 54, 1623–1648 (2002)

    Article  MATH  Google Scholar 

  11. Kim, M.S., Kim, C.W., Kim, J.H., Choi, J.H.: Efficient optimization method for noisy responses of mechanical systems. J. Mech. Eng. Sci. 222(C), 2433–2439 (2008)

    Article  Google Scholar 

  12. Kitayama, S., Arakawa, M., Yamazaki, K.: Sequential approximate optimization using radial basis function network for engineering optimization. Optim. Eng. 12(4), 535–557 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was supported by the International Collaborative Research Project between KSU and KMU and by the MKE (The Ministry of Knowledge Economy), Korea, under the CITRC (Convergence Information Technology Research Center) support program (NIPA-2012-H0401-12-2003) supervised by the NIPA(National IT Industry Promotion Agency).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Heo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Heo, S.J. et al. (2013). Multi-Disciplinary Constraint Design Optimization Based on Progressive Meta-Model Method for Vehicle Body Structure. In: Muñoz-Rojas, P. (eds) Optimization of Structures and Components. Advanced Structured Materials, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-319-00717-5_7

Download citation

Publish with us

Policies and ethics