Skip to main content

Basic Information for Design of Particulate Products

  • Chapter
  • First Online:
Particulate Products

Part of the book series: Particle Technology Series ((POTS,volume 19))

Abstract

In this chapter some basic features of particulate products are examined, which are relevant for adequate design and best performance. Particle packing and product porosity is considered first. Closest packing is reached within size distributions, where small particles fill the voids in between the larger particles. Smallest void fractions in monosized powders are reported to be about 40 % (related solids content 60 %); the ideal void fraction is 26 %. For polydisperse powders, especially those containing polymodal size distributions minimum void fractions may be considerably smaller and maximum packing densities larger. Powder flow and cohesivity strongly depend upon particle size and shape. Various empirical values for the characterization of flowability are presented. In general, it can be said that dry powders having a particle size above 50 μm and regular particle shape, flow easily. When the particles are much smaller and/or when they have a large aspect ratio, they tend not to flow at all: they are called cohesive. The fluidization of powders follows a similar trend where granular particles in the 20–200 μm size range fluidize readily and smaller particles together with ones of high aspect ratio, can cause difficulties. Geldart has categorized powders as cohesive, aeratable, bubbling and spouting; the latter two words mean that particles larger than about 200 μm show another ‘fluidization’ behavior. Equations for fluid flow through packed beds are developed by different authors. The equation of Carman and Kozeny is used in filtration. The viscous behavior of emulsions and suspensions is strongly related to particulate concentration. At low concentrations, the viscosity shows a Newtonian behavior; it is independent of particle size and relates linearly with concentration. At high concentrations, various types of non-Newtonian behavior exist. Viscosity depends on particle size (distribution), but is no longer linearly related to particulate concentration. Differences between solids concentration and maximum packing density of the particles play an important role. Moreover, rheological behavior may be time-dependent through changing particle-particle or molecular interactions. Adequate non-Newtonian behavior is essential for good performance during production and for the final quality of various products, such as chocolate, ice cream and paint dispersions. Long-term stability of dispersions often relates to the zeta-potential. Absolute values of at least about 50 mV can cause stable dispersions. At low zeta-potential values, the particles tend to agglomerate or flocculate. Dispersion stability may be improved by application of steric stabilizers. In paint, color, scattering, transparency and hiding power of dispersed particles are also strongly related to particle size and shape. Several equations are provided that are useful in the design of pigment mixtures. These aspects play a role in human appreciation of paints, foods and creams. Sensorial characteristics are important in foods, sweets, beverages and cosmetics. Some terminology is provided. Interpretation of some of the terminology is subjective. This is due to the characteristics not only having a physical background but may also relate to particle size and shape, psychological or cultural aspects. Finally, this chapter deals with the adsorption and diffusion of components into the pores of adsorbents and catalysts. In such cases the diffusion rate is strongly linked to the pore size distribution and the effective molecular size of the diffusing component.

Good correlation between parameters is fine,

Some added understanding is better.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The equivalent packing size represents the size of agglomerates, which act as (composed) particles during packing.

  2. 2.

    For solids, strain can be seen as deformation.

  3. 3.

    The effective particle density to be used in Stokes’ law is best determined by a method where a known weight of dispersed particles displaces a measured volume of suspending liquid. This method regards the influence of pores in the same way as in sedimentation. An absolute density value, determined by gas pyknometer, is not appropriate in the presence of pores.

References

  1. Allen, T.: Powder Sampling and Particle Size Determination. Elsevier, Boston (2003)

    Google Scholar 

  2. ASTM DS72: Lexicon for Sensory Evaluation of Aroma, Flavor, Texture and Appearance. American Society for Testing and Materials, Philadelphia (2011)

    Google Scholar 

  3. Barnes, H.A.: Shear-thickening (“Dilatancy”) in suspensions of nonaggregating solid particles dispersed in newtonian liquids (review). J Rheol. 33(2), 329–366 (1989)

    Article  ADS  Google Scholar 

  4. Barnes, H.A.: Thixotropy – a review. J. Non-Newtonian Fluid Mech. 70, 1–33 (1997)

    Article  Google Scholar 

  5. Behringer, R., Louge, M., McElwaine, J., Mort, P., Pfeffer, R., Sundaresan, S.: Report of the IFPRI owder flow working group SAR30-08 (2005)

    Google Scholar 

  6. Brinkmann, H.C.: The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 20, 571 (1952)

    Google Scholar 

  7. Caldwell, D.H., Babbitt, H.E.: Flow of muds, sludges and suspensions in circular pipe. Ind. Eng. Chem. 33, 249–256 (1941)

    Article  Google Scholar 

  8. Carman, P.C.: Fundamental principles of industrial filtration. Chem. Eng. Res. Des. 16a, 168–188 (1938)

    Google Scholar 

  9. Carr, R.L.: Evaluating flow properties of solids. Chem. Eng. 72, 163–168 (1965)

    Google Scholar 

  10. Cheng, D.C.H., Kruszewski, A.P., Senior, J.R., Roberts, T.A.: The Effect of particle size distribution on the rheology of an industrial suspension. J. Materials sci. 25, 353–373 (1990)

    Google Scholar 

  11. Coulson, J.M., Richardson, J.F., Backhurst, J.R., Harker, J.H.: Chemical Engineering, vol. I, Fluid Flow, Heat Transfer and Mass Transfer. Butterworth-Heinemann (1999)

    Google Scholar 

  12. Duncan, D.R.: The identification and estimation of pigments in pigmented compositions by reflectance spectrophotometry. J. Oil Color Chem. Assoc. 45, 300–324 (1962)

    Google Scholar 

  13. Eilers, H.: Die Viskosität von Emulsionen Hochviskoser Stoffe als Funktion der Konzentration. Kolloid Zeitschrift 102, 154–169 (1943)

    Google Scholar 

  14. Einstein, A.: Investigations on the Theory of Brownian Movement. Dover Publications, New York (1956)

    MATH  Google Scholar 

  15. Einstein, A. Ann. Physik Lpz. 19 (1906) 289 and 34 (1911) 591

    Google Scholar 

  16. Eley, R.R. In: ASTM Paint Testing Manual, pp. 333–368. ASTM Internat (1995)

    Google Scholar 

  17. Emery, E., Oliver, J., Pugsley, T., Sharma, J., Zhou, J.: Flowability of moist pharmaceuticals. Powder Technol. 189, 409–415 (2009)

    Article  Google Scholar 

  18. Engelen, L., van der Bilt, A.: Oral physiology and texture perception of semisolids. J. Text. Studies 39, 83–113 (2008)

    Article  Google Scholar 

  19. Farris, R.J.: Prediction of the viscosity of multimodal suspensions from unimodal viscosity data. Trans. Soc. Rheol. 12, 281–301 (1968)

    Google Scholar 

  20. Geldart, D. (ed.): Gas Fluidization and Technology. Wiley, New York (1986)

    Google Scholar 

  21. Geldart, D. In: McGlinskey, D. (ed.), Characterization of Bulk Solids. Oxford, CRC-Blackwell (2005)

    Google Scholar 

  22. German, R.M., Park, S.J.: Handbook of Mathematical Relations in Particulate Materials Processing. Wiley, Hoboken (2008)

    Book  Google Scholar 

  23. Green, D.W., Maloney, J.O. (eds.): Perry’s Chemical Engineers Handbook. McGraw-Hill, New York (1984)

    Google Scholar 

  24. Hammond III, H.K., Kigle-Boeckler, G.: Gloss. In: ASTM Paint Testing Manual. ASTM International (1995)

    Google Scholar 

  25. Hiemenz, P.C., Rajagopalan, R.: Principles of Colloid and Surface Chemistry. Marcel Dekker, New York (1997)

    Google Scholar 

  26. Hinds, W.C.: Aerosol Technology: Properties, Behavior and Measurement of Airborne Particles. Wiley, New York (1999)

    Google Scholar 

  27. Howell, D.M.: The technology, formulation and application of powder coatings; series in surface coatings technology. In: Sanders, J.D. (ed.), vol. 1. Wiley, New York (2000)

    Google Scholar 

  28. Hunter, R.J.: Zeta Potential in Colloid Science; Principles and Applications. Academic, New York (1981)

    Google Scholar 

  29. Ikeda, K.J.: New seasonings. Tokyo Chem. Soc. 30, 820–836 (1909) (Japanese); English translation in: Chem. Senses 27 (2002) 847–849

    Google Scholar 

  30. Imai, E., Saito, K., Hatakeyama, M., Hatae, K., Shimada, A.: Effect of physical properties of food particles on the degree of graininess perceived in the mouth. J. Text. Studies 30, 59–88 (1999)

    Google Scholar 

  31. ISO 9277.: Determination of the Specific Surface Area of Solids by Gas Adsorption Using the BET Method; (in revision) International Standards Organisation (1995)

    Google Scholar 

  32. ISO 13099 (in prep.).: Methods for Zeta Potential Determination; International Standards Organisation

    Google Scholar 

  33. ISO 15901-1.: Evaluation of Pore Size Distributions of Solid Materials by Mercury Porosimetry. International Standards Organisation (2005)

    Google Scholar 

  34. ISO 15901-2.: Evaluation of Pore Size Distributions of Solid Materials by Gas Adsorption (and corrigendum). International Standards Organisation (2006/2007)

    Google Scholar 

  35. ISO 15901-3.: Analysis of Micro-pores by Gas Adsorption. International Standards Organisation (2007)

    Google Scholar 

  36. Jenike, A.W.: Gravity flow of bulk solids. Utah. Eng. Exp. Stn. Bull. 108, 1–294 (1961); Univ. Utah, Salt Lake City

    Google Scholar 

  37. Jenike, A.W.: Storage and flow of solids. Utah. Eng. Exp. Stn. Bull. 123, 1–194 (1964); Univ. Utah, Salt Lake City

    Google Scholar 

  38. Johnston, R.M.: Color theory (Ch. III-D-b). In: Patton, T.C. (ed.), Pigment Handbook, vol. III, Characterization and Physical Relationships. Wiley, London (1973)

    Google Scholar 

  39. Kissa, E.: Dispersions: Characterization, Testing and Measurement. Marcel Dekker, New York (1999)

    Google Scholar 

  40. Kramer, A., Szczesniak, A.S.: Texture Measurements of Foods. D. Reidel, Dordrecht (1973)

    Google Scholar 

  41. Krieger, I.M., Dougherty, T.J.: A mechanism for non-newtonian flow in suspensions of rigid spheres. Trans. Soc. Rheol. 3, 137–152 (1959)

    Article  Google Scholar 

  42. Krishna, R.: A unified approach to the modelling of intraparticle diffusion in adsorption processes. Gas Separ. Purif. 7, 91–104 (1993)

    Google Scholar 

  43. Kubelka, P., Munk, F.: Ein Beitrag zur Optik der Farb Anstriche. Zeitschr. f. techn. Physik 12, 593–601 (1931)

    Google Scholar 

  44. Kubelka, P.: New contributions to the optics of intensely light - scattering materials, Part I. J. Opt.Soc. Am. 38, 448–457 (1948)

    MathSciNet  Google Scholar 

  45. Lavoie, F., Cartilier, L., Thibert, R.: New methods characterizing avalanche behavior to determine powder flow. Pharm. Res. 19, 887–893 (2002)

    Google Scholar 

  46. Lee, Y.S.L., Poynter, R., Podczek, F., Newton, J.M.: Development of a dual approach to assess powder flow from avalanching behavior. AAPS PharmSciTech. 1 (2000) art. 21

    Google Scholar 

  47. Lindemann, B., Ogiwara, Y., Ninomiya, Y.: The discovery of Umami. Chem. Senses 27, 843–844 (2002)

    Article  Google Scholar 

  48. Lyklema, J. (ed.): Fundamentals of Interface and Colloid Science. Particulate Colloids, vol. IV. Elsevier, London (2005)

    Google Scholar 

  49. Macosco, C.W.: Rheology: Principles, Measurement and Applications. VCH Publishers, New York (1994)

    Google Scholar 

  50. Marrion, A.: The Chemistry and Physics of Coatings. Royal Soc. Chem, Cambridge (2004)

    Book  Google Scholar 

  51. Masuda, H., Higashitani, K., Yoshida, H.: Powder Technology; Fundamentals of Particles, Powder Beds and Particle Generation. CRC Press, Boca Raton (2007)

    Google Scholar 

  52. McGee, E.: Predicting powder flow. Pharm. Tech. (June, 2007)

    Google Scholar 

  53. McGlinskey, D. In: McGlinskey, D. (ed.), Characterization of bulk solids. CRC-Blackwell, Oxford (2005)

    Google Scholar 

  54. Merkus, H.G.: Particle Size Measurements; Fundamentals, Practice, Quality. Springer, Dordrecht (2009)

    Google Scholar 

  55. Metzner, A.B.: Rheology of suspensions in polymeric liquids. J. Rheol. 29, 739–775 (1985)

    Google Scholar 

  56. Mischenko, M.I., Travis, L.D., Lacis, A.A.: Scattering, Absorption and Emission of Light by Small Particles. Cambridge Univ. Press, New York (2002)

    Google Scholar 

  57. Mischenko, M.I., Travis, L.D., Lacis, A.A.: Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering. Cambridge Univ. Press, New York (2006)

    Google Scholar 

  58. Mongia, G., Ziegler, G.R.: The role of particle size distribution of suspended solids in defining the flow properties of milk chocolate. Int. J. Food Prop. 3, 137–147 (2000)

    Google Scholar 

  59. Mudgett, P.S., Richards, L.W.: Multiple scattering calculations for technology. Appl. Optics 10, 1485–1502 (1971)

    Google Scholar 

  60. Nelson, R.D.: Dispersion of powders in liquids. In: Kirk-Othmer Encyclopedia of Chemical Technology, vol. 19. Wiley, Chichester (1996)

    Google Scholar 

  61. Nelson, R.D.: Dispersion of Powders in Liquids. Elsevier, New York (1988)

    Google Scholar 

  62. Phillips, D.G., Billmeyer Jr., F.W., Coatings, J.: Predicting Reflectance of Color and Paint Films; IV Kubelka - Munk Scattering Coefficient. J. Coatings Technol. 48 616, 30–36 (1976)

    Google Scholar 

  63. Qi, F., Tanner, R.I.: Random close packing and relative viscosity of multimodal suspensions. Rheol. Acta, 04 Oct. 2011 (online)

    Google Scholar 

  64. Rhodes, M.: Introduction to Particle Technology. Wiley, Chichester (1998)

    Google Scholar 

  65. Riley, F.L.: Structural Ceramics; Fundamentals and Case Studies. Cambridge Univ. Press, New York (2009)

    Google Scholar 

  66. Roscoe, R.: The viscosity of suspensions of rigid spheres. Brit. J. Appl. Phys. 3, 267–269 (1952)

    Google Scholar 

  67. Schabbach, L.M., Bondioli, F., Ferrari, A.M., Petter, C.O., Fredel, M.C.: Colour in ceramic glazes: Efficiency of the Kubelka - Munk model in glazes with a black pigment and opacifier. J. Eur. Ceram. Soc. 29, 2685–2690 (2009)

    Google Scholar 

  68. Scott, D.M.: Improving control of particulate processes via ultrasonic spectroscopy. In: APACT10: Advances in Process Analytics and Control Technology, Manchester, 28–30 April 2010

    Google Scholar 

  69. Scott, G.D., Kilgour, D.M.: The density of random close packing of spheres. J. Phys. D (Brit. J. Appl. Phys.) 2, 863–866 (1969)

    Google Scholar 

  70. Seville, J.P.K., Tüzün, U., Clift, R.: Processing of Particulate Solids. Chapman and Hall, London (1997)

    Google Scholar 

  71. Sherman, P.: The viscosity of emulsions. Rheol. Acta 2, 74–82 (1962)

    Article  Google Scholar 

  72. Sherman, P.: Industrial Rheology. Academic, London (1970)

    Google Scholar 

  73. Sherman, P. (ed.): Food Texture and Rheology. Academic, New York (1979)

    Google Scholar 

  74. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquérol, J., Siemieniewska, T.: Pure Appl. Chem 57, 603–619 (1985) (© 1985 IUPAC)

    Google Scholar 

  75. Smith, P.A., Haber, R.A., Am, J.: The effect of particle packing in the filtration and rheology behavior of extended size distribution alumina suspensions. Ceram Soc. 78, 1737–1744 (1995)

    Google Scholar 

  76. Strivens, T.A.: Introduction to rheology (Ch. 14). In: Lambourne, R., Strivens, T.A. (eds.) Paint and Surface Coatings, 2nd edn. Woodhead Publ, New York (1999)

    Google Scholar 

  77. Suzuki, M., Sato, H., Hasegawa, M., Hirota, M.: Effect of size distribution on tapping properties of fine powder. Powd. Technol. 118, 53–57 (2001)

    Article  Google Scholar 

  78. Szczesniak, A.S.: Texture is a sensory property. Food Qual. Pref. 13, 215–225 (2002)

    Article  Google Scholar 

  79. Tadros, T.F.: Colloids in Paints. Colloids and Interface Science Series, vol. 6. Wiley-VCH, Weinheim (2010)

    Google Scholar 

  80. Tanner, R.I., Walters, K.: Rheology: An Historical Perspective. Elsevier, New York (1998)

    MATH  Google Scholar 

  81. Taylor, M.K., Ginsburg, J., Hickley, A.J., Gheyas, F.: Composite method to quantify powder flow as a screening method in early tablet or capsule formulation development. AAPS PharmSciTech 1(3), E18 (2000). doi:article 18

    Article  Google Scholar 

  82. US Pharmacoeia 29-NF24 p.3017 <1174 > Powder Flow. http://www.pharmacopeia.cn/v29240/usp29nf24 s0_c1174.html

  83. Vadillo, D.C., Tuladhar, T.R., Mulji, A.C., Mackley, M.R.: The rheological characterization of linear viscoelasticity for ink jet fluids using piezo axial vibrator and torsion resonator rheometers. J. Rheol. 54, 781–795 (2010)

    Article  ADS  Google Scholar 

  84. Valverde Millán, J.M.: Fluidization of Fine Powders. Particle Technology Series, vol. 18. Springer, Dordrecht (2013)

    Book  Google Scholar 

  85. Wagner, N.J., Brady, J.F.: Shear thickening in colloidal dispersions. Phys. Today 27–32, (2009)

    Google Scholar 

  86. Weber, H.W.: Lichtstreuung and Teilchengr­szenverteilung Kugelf­rmiger Teilchen. Kolloid Zeitschrift u. Zeitschift f. Polym. 188, 40–44 (1962)

    Google Scholar 

  87. Yu, A.B.., Bridgewater, J., Burbidge, A.: On the modeling of the packing of fine particles. Powd. Technol. 92, 185–194 (1997)

    Article  Google Scholar 

  88. Ziegler, G.R., Mongia, G., Hollender, R.: The role of particle size distribution of suspended solids in defining the sensory properties of milk chocolate. Int. J. Food Prop. 4 2, 353–370 (2001)

    Google Scholar 

  89. www.giss.nasa.gov/mmischenko/t_matrix.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henk G. Merkus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Merkus, H.G. (2014). Basic Information for Design of Particulate Products. In: Merkus, H., Meesters, G. (eds) Particulate Products. Particle Technology Series, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-00714-4_2

Download citation

Publish with us

Policies and ethics