Skip to main content

Powder Coatings and the Effects of Particle Size

  • Chapter
  • First Online:
Particulate Products

Part of the book series: Particle Technology Series ((POTS,volume 19))

Abstract

Powder coatings are increasingly applied in various industrial coating applications. In this chapter the effects of particle size and particle size distribution on the manufacturing, application and coating properties of powder coatings are discussed. The chemical composition of thermoplast and thermoset resins and their corresponding powder coating formulations are addressed together with the premixing, extrusion, cooling, chipping, fine grinding, classification and collection steps in the manufacturing process. The resulting particle size and particle size distribution (PSD) of the powder coating have pronounced effects on the application process especially via the fluidized bed and electrostatic spray application. In many steps particle size influences the outcome: fluidization, charging, spray trajectories, layer build-up, adhesion are all affected.

In addition to the above effects, the PSD of coating components like pigments, fillers and additives has a large impact on the final properties of the coatings. This includes proper dispersion in the resin. This PSD is of prime importance since it directly affects properties like flow, degassing color, matting, adhesion and outdoor durability.

The final section addresses the effects of particle size on safety (explosions and worker safety) and sustainability (carbon footprint of powder coatings).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The image force is the electrostatic force calculated through application of an image field. This field is used to simplify calculation and visualization of the electric field distribution near a conducting surface. The image field is constructed by an imaginary charge, which is the mirror image of the real charge in respect to the surface but has the opposite sign.

References

  1. Ang, M.L., Lloyd, P.J.: Int. J. Multiphas. Flow 13, 823–836 (1987)

    Article  Google Scholar 

  2. Bailey, A.G.: J. Electrostat. 45, 85–120 (1998)

    Article  Google Scholar 

  3. BASF EPA 650978 (1994)

    Google Scholar 

  4. Biris, A.S., Mazumder, M.K., Yurteri, C.U., Sims, R.A., Snodgrass, J., De, S.: Particul. Sci. Technol. 19, 199–217 (2001)

    Article  Google Scholar 

  5. Cazaux, J.: J. Electrostat. 65, 764–774 (2007)

    Article  Google Scholar 

  6. Crompton, C.: Eur. Coat. J. 4, 56 (2006)

    Google Scholar 

  7. DSM Resins BV, EO 0.188.840 (1984)

    Google Scholar 

  8. DSM Resins, WO 93/25596 (1993)

    Google Scholar 

  9. DSM IP Assets BV, WO 2010052290 (2010)

    Google Scholar 

  10. Duivenvoorde, F.L., Van Nostrum, C.F., Laven, J., van der Linde, R.J.: Coat. Technol. 72, 145–152 (2000)

    Article  Google Scholar 

  11. Eckhoff, R.K., Pedersen, G.H., Arvisson, T.: J. Hazard Mater. 19, 1–16 (1988)

    Article  Google Scholar 

  12. Gemmer, E.: Industrie-Anzeiger 75, 1095 (1953)

    Google Scholar 

  13. The Glidden Company, EP 0.256.369 (1986)

    Google Scholar 

  14. Greidanus, P.J.: 12th Congress of Federation of Scandinarian Paint and Varnish Technologist, Helsinki, 8–11 May 1988

    Google Scholar 

  15. Halim, F., Barringer, S.A.: J. Electrost. 65, 168–173 (2007)

    Article  Google Scholar 

  16. Hardy, G.F.: J. Paint. Technol. 46, 73–82 (1974)

    Google Scholar 

  17. Hughes, J.F.: J. Electrostat. 23, 3–23 (1989)

    Article  Google Scholar 

  18. Kansai Paint Co., US Pat. 3.876.578 (1975)

    Google Scholar 

  19. Klanjsek-Gunde, M., Kunaver, M., Mozetic, M., Hrovat, A.: Powder Technol. 148, 64–66 (2004)

    Article  Google Scholar 

  20. Klanjsek-Gunde, M., Kunaver, M., Cekada, M.: Dyes Pigments 74, 202–207 (2007)

    Article  Google Scholar 

  21. Kunaver, M., Klanjsek-Gunde, M., Mozetic, M., Kunaver, M., Hrovat, A.: Surf. Coat. Int. Part B Coat. Trans. 86, 175–179 (2003)

    Article  Google Scholar 

  22. de Lange, P.G.: J. Coat. Technol. 56, 23 (1984)

    ADS  Google Scholar 

  23. de Lange, P.G.: Powder Coatings Chemistry and Technology, Vincentz Network, p. 202 (2004)

    Google Scholar 

  24. Li, Z., Zhu, J., Zhang, C.: Powder Technol. 150, 155–167 (2005)

    Article  Google Scholar 

  25. Lothongkum, A.W., Nonthapone, R., Seangkiatiyuth, K., Tanthapanichkoon, W.: Adv. Powder Technol. 18, 175–186 (2007)

    Article  Google Scholar 

  26. Malvern Instruments Ltd., Powder Coatings Industry Overview; www.malvern.com (2012)

  27. Maetens, D.: Proc. Radtech’98, Chicago, p. 170 (1998)

    Google Scholar 

  28. Mazumder, M.K., Sims, R.A., Biris, A.S., Srirama, P.K., Saini, D., Yurteri, C.U., Trigwell, S., De, S., Sharma, R.: Chem. Eng. Sci. 61, 2192–2211 (2006)

    Article  Google Scholar 

  29. McLafferty, J.J., Figlioti, P.A., Camilleri, L.T.: J. Coat. Technol. 58, 23 (1986)

    Google Scholar 

  30. Meng, X., Zhu, J., Zhang, H.: J. Electrostat. 67, 663–671 (2009)

    Article  Google Scholar 

  31. Meng, X., Zhang, H., Zhu, J.: Powder Technol. 195, 264–270 (2009)

    Article  Google Scholar 

  32. Misev, T., Belder, E.: JOCCA 9, 363 (1989)

    Google Scholar 

  33. Misev, T.A.: Powder Coatings Chemistry and Technology. Wiley, Chichester (1991)). 196 and 203

    Google Scholar 

  34. Misev, L., Schmid, O., Udding-Louwrier, S., de Jong, E.S., Bayards, R.: J. Coat. Technol. 71, 37–44 (1999)

    Article  Google Scholar 

  35. Morris, D.: Comparative Footprint Study on Industrial Coatings for Metal, European Coating Show. Nurnberg (2011)

    Google Scholar 

  36. Morton Thiokol, EP 309 088 (1987)

    Google Scholar 

  37. Nakamichi, T.: Prog. Org. Coat. 8, 19–46 (1980)

    Article  Google Scholar 

  38. Nix, V.G., Dodge, J.S.: J. Paint. Technol. 45, 59–63 (1973)

    Google Scholar 

  39. Ouabbas, Y., Dodds, J., Galet, L., Chamayou, A., Baron, M.: Powder Technol. 189, 245–252 (2009)

    Article  Google Scholar 

  40. Pappas, S.P., Hill, L.W.: J. Coat. Technol. 53, 43 (1981)

    Google Scholar 

  41. Patton, T.C.: Paint Flow and Pigment Dispersion, p. 510. Wiley (1973)

    Google Scholar 

  42. Pauthenier, M.M., de Moreau-Hanot, M.J.: Physique Radium 7, 590–613 (1932)

    Article  Google Scholar 

  43. PCI “Efficient Grinding and Classifying of Powder Coatings “, PCI Magazine 5(1) (2003)

    Google Scholar 

  44. Pennington, B.D., Grunlan, J.C., Urban, M.W.: J. Coat. Technol. 71, 135–142 (1999)

    Article  Google Scholar 

  45. von Pidoll, U., Krämer, H.: J. Electrostat. 30, 103–114 (1993)

    Article  Google Scholar 

  46. Satoh, H., Harada, Y., Libke, S.: Prog. Org. Coat. 34, 193–199 (1998)

    Article  Google Scholar 

  47. Scado, B.V.: US Pat. 3.624.232 (1970)

    Google Scholar 

  48. Shah, U., Zhu, J., Zhang, C., Nother Sr., J.H.: Powder Technol. 164, 22–32 (2006)

    Article  Google Scholar 

  49. Shah, U., Zhang, C., Zhu, J.: J. Electrostat. 64, 345–354 (2006)

    Article  Google Scholar 

  50. Sims, R.A., Mazumder, M.K., Chok, W., Wankum, D.L., Guo, W., Tebbets, G.: Part. Sci. Technol. 18, 239–248 (1998)

    Article  Google Scholar 

  51. Singh, S., Bright, A.W.: IEEE IAS Proc. 1–4 (1977)

    Google Scholar 

  52. Sumonsiri, N., Barringer, S.A.: J. Food Sci. 75, E537–E543 (2010)

    Article  Google Scholar 

  53. UCB SA, DE Pat. 2.352.467 (1972)

    Google Scholar 

  54. Unilever N.V., DE Pat. 2.163.962 (1971)

    Google Scholar 

  55. Vilela, A., Concepcion, L., Accart, P., Chamayou, A., Baron, M., Dodds, J.A.: Part. Syst. Charact. 23, 127–132 (2006)

    Article  Google Scholar 

  56. Wadenpohl, C.: Int. J. Miner. Process. 74S, S155–S164 (2004)

    Article  Google Scholar 

  57. Wang, F., Martinuzzi, R., Zhu, J.: Powder Technol. 150, 20–29 (2005)

    Article  Google Scholar 

  58. Werner & Pfleiderer GmbH, Brochure WER 05 066/3-1.5-VIII (1986)

    Google Scholar 

  59. White, H.J.: Industrial Electrostatic Precipitation. Addison-Wesley, Reading (1963)

    Google Scholar 

  60. Yousuf, S., Barringer, S.A.: J. Food Eng. 83, 550–561 (2007)

    Article  Google Scholar 

  61. Zhou, Q.T., Qu, L., Larson, I., Stewart, P.J., Morton, D.A.V.: Int. J. Pharm. 394, 50–59 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Menno B. Claase .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Claase, M.B., Vercoulen, P., Misev, T.A. (2014). Powder Coatings and the Effects of Particle Size. In: Merkus, H., Meesters, G. (eds) Particulate Products. Particle Technology Series, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-00714-4_13

Download citation

Publish with us

Policies and ethics