Skip to main content

Part of the book series: Springer Topics in Signal Processing ((STSP,volume 10))

  • 1920 Accesses

Abstract

Optical flow is the velocity vector field of the projected environmental surfaces when a viewing system moves relative to the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.J. Gibson, The Perception of the Visual World (Houghton Mifflin, Boston, 1950)

    Google Scholar 

  2. K. Nakayama, Biological image motion processing: a survey. Vision. Res. 25, 625–660 (1985)

    Article  Google Scholar 

  3. H.-H. Nagel, On the estimation of optical flow: relations between different approaches and some new results. Artif. Intell. 33(3), 299–324 (1987)

    Article  Google Scholar 

  4. H.-H. Nagel, Image sequence evaluation: 30 years and still going strong, in International Conference on Pattern Recognition, 2000, pp. 1149–1158

    Google Scholar 

  5. J. Barron, D. Fleet, S. Beauchemin, Performance of optical flow techniques. Int. J. Comput. Vision 12(1), 43–77 (1994)

    Article  Google Scholar 

  6. A. Mitiche, Computational Analysis of Visual Motion (Plenum Press, New York, 1994)

    Book  Google Scholar 

  7. A. Mitiche, P. Bouthemy, Computation and analysis of image motion: A synopsis of current problems and methods. Int. J. Comput. Vision 19(1), 29–55 (1996)

    Google Scholar 

  8. C. Stiller, J. Konrad, Estimating motion in image sequences: A tutorial on modeling and computation of 2D motion. IEEE Signal Process. Mag. 16(4), 70–91 (1999)

    Google Scholar 

  9. G. Aubert, P. Kornpbrost, Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations (Springer, New York, 2006)

    Google Scholar 

  10. B. Horn, B. Schunck, Determining optical flow. Artif. Intell. 17, 185–203 (1981)

    Article  Google Scholar 

  11. B.D. Lucas, T. Kanade, An iterative image registration technique with an application to stereo vision, in IJCAI, 1981, pp. 674–679

    Google Scholar 

  12. A. Bruhn, J. Weickert, C. Schnörr, Lucas/kanade meets Horn/Schunck: combining local and global optic flow methods. Int. J. Comput. Vision 61(3), 211–231 (2005)

    Article  Google Scholar 

  13. A. Mitiche, A. Mansouri, On convergence of the Horn and Schunck optical flow estimation method. IEEE Trans. Image Process. 13(6), 848–852 (2004)

    Article  Google Scholar 

  14. C. Koch, J. Luo, C. Mead, J. Hutchinson, Computing motion using resistive networks, in NIPS, 1987, pp. 422–431

    Google Scholar 

  15. J. Hutchinson, C. Koch, J. Luo, C. Mead, Compting motion using analog and binary resistive networks. IEEE Comput. 21(3), 52–63 (1988)

    Article  Google Scholar 

  16. H. Nagel, W. Enkelmann, An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Trans. Pattern Anal. Mach. Intell. 8(5), 565–593 (1986)

    Article  Google Scholar 

  17. H.-H. Nagel, On a constraint equation for the estimation of displacement rates in image sequences. IEEE Trans. Pattern Anal. Mach. Intell. 11(1), 13–30 (1989)

    Article  MATH  Google Scholar 

  18. H.-H. Nagel, Extending the ’oriented smoothness constraint’ into the temporal domain and the estimation of derivatives of optical flow, in European Conference on Computer Vision, 1990, pp. 139–148

    Google Scholar 

  19. M. Snyder, On the mathematical foundations of smoothness constraints for the determination of optical flow and for surface reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 13(11), 1105–1114 (November 1991)

    Article  Google Scholar 

  20. A. Mansouri, A. Mitiche, J. Konrad, Selective image diffusion: application to disparity estimation, in International Conference on Image Processing, 1998, pp. 284–288

    Google Scholar 

  21. F. Hampel, E. Ronchetti, P. Rousseeuw, W. Stahel, Robust Statistics: The Approach Based on Influence Functions (Wiley-Interscience, New York, 1986)

    MATH  Google Scholar 

  22. M. Black, “Robust incremental optical flow”, in Ph.D. Thesis, Yale University, Research Report YALEU-DCS-RR-923, 1992

    Google Scholar 

  23. M. J. Black, P. Anandan, A framework for the robust estimation of optical flow, in International Conference on Computer Vision, 1993, pp. 231–236

    Google Scholar 

  24. A. Blake, A. Zisserman, Visual Reconstruction (MIT Press, Cambridge, 1987)

    Google Scholar 

  25. E. Memin, P. Perez, Joint estimation-segmentation of optic flow, in European Conference on Computer Vison, 1998, vol. II, pp. 563–578

    Google Scholar 

  26. S. Geman, D. Geman, Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 721–741 (1984)

    Article  MATH  Google Scholar 

  27. J. Konrad, E.Dubois, Bayesian estimation of motion vector fields. IEEE Trans. Pattern Anal. Mach. Intell. 14(9), 910–927 (1992)

    Google Scholar 

  28. F. Heitz, P. Bouthemy, Multimodal estimation of discontinuous optical flow using markov random fields. IEEE Trans. Pattern Anal. Mach. Intell. 15(12), 1217–1232 (1993)

    Article  Google Scholar 

  29. J. Zhang, G.G. Hanauer, The application of mean field theory to image motion estimation. IEEE Trans. Image Process. 4(1), 19–33 (1995)

    Article  Google Scholar 

  30. P. Nesi, Variational approach to optical flow estimation managing discontinuities. Image Vision Comput. 11(7), 419–439 (1993)

    Article  Google Scholar 

  31. A. Mitiche, I. Ben Ayed, Variational and Level Set Methods in Image Segmentation (Springer, New York, 2010)

    Google Scholar 

  32. D. Mumford, J. Shah, Boundary detection by using functionals. Comput. Vis. Image Underst. 90, 19–43 (1989)

    Google Scholar 

  33. Y.G. Leclerc, Constructing simple stable descriptions for image partitioning. Int. J. Comput. Vision 3(1), 73–102 (1989)

    Article  Google Scholar 

  34. J. Weickert, A review of nonlinear diffusion filtering, in Scale-Space, 1997, pp. 3–28

    Google Scholar 

  35. L. Blanc-Feraud, M. Barlaud, T. Gaidon, Motion estimation involving discontinuities in a multiresolution scheme. Opt. Eng. 32, 1475–1482 (1993)

    Article  Google Scholar 

  36. M. Proesmans, L.J.V. Gool, E.J. Pauwels, A. Oosterlinck, Determination of optical flow and its discontinuities using non-linear diffusion, in European Conference on Computer Vision, 1994, pp. 295–304

    Google Scholar 

  37. R. Deriche, P. Kornprobst, G. Aubert, Optical-flow estimation while preserving its discontinuities: A variational approach, in Asian Conference on Computer Vision, 1995, pp. 71–80

    Google Scholar 

  38. G. Aubert, R. Deriche, P. Kornprobst, Computing optical flow via variational thechniques. SIAM J. Appl. Math. 60(1), 156–182 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. A. Kumar, A. Tannenbaum, G.J. Balas, Optical flow: a curve evolution approach. IEEE Trans. Image Process. 5(4), 598–610 (1996)

    Article  Google Scholar 

  40. J. Weickert, C. Schnörr, Variational optic flow computation with a spatio-temporal smoothness constraint. J Math. Imaging Vision 14(3), 245–255 (2001)

    Article  MATH  Google Scholar 

  41. T. Brox, A. Bruhn, N. Papenberg, J. Weickert, High accuracy optical flow estimation based on a theory for warping, 2004. http://citeseer.ist.psu.edu/brox04high.html.

  42. N. Papenberg, A. Bruhn, T. Brox, S. Didas, J. Weickert, Highly accurate optic flow computation with theoretically justified warping. Int. J. Comput. Vision 67(2), 141–158 (2006)

    Article  Google Scholar 

  43. C. Zach, T. Pock, H. Bischof, A duality based approach for realtime tv-l1 optical flow, in Annual Symposium of the German Association Pattern Recognition, 2007, pp. 214–223

    Google Scholar 

  44. T. Nir, A.M. Bruckstein, R. Kimmel, Over-parameterized variational optical flow. Int. J. Comput. Vision 76(2), 205–216 (2008)

    Article  Google Scholar 

  45. M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, H. Bischof, Anisotropic huber-l1 optical flow, in BMVC, 2009

    Google Scholar 

  46. C. Vogel, Computational Methods for Inverse Problems (SIAM, Philadelphia, 2002)

    Google Scholar 

  47. L. I. Rudin, S. Osher, Total variation based image restoration with free local constraints, in ICIP, vol. 1, 1994, pp. 31–35

    Google Scholar 

  48. I. Cohen, Nonlinear variational method for optical flow computation, in SCIA93, 1993, pp. 523–530

    Google Scholar 

  49. P. Perona, J. Malik, Scale space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1981)

    Article  Google Scholar 

  50. G. Bellettini, On the convergence of discrete schemes for the perona-malik equation. Proc. Appl. Math. Mech.7(1), 1023401–1023402 (2007)

    Google Scholar 

  51. W. Enkelmann, Investigation of multigrid algorithms for the estimation of optical flow fields in image sequences. Computer Vision, Graphics, and Image Processing 43(2), 150–177 (August 1988)

    Article  Google Scholar 

  52. D. Terzopoulos, Efficient multiresolution algorithms for computing lightness, shape-from-shading, and optical flow, in AAAI conference, 1984, pp. 314–317

    Google Scholar 

  53. D. Cremers, C. Schnorr, Motion competition: Variational integration of motion segmentation and shape regularization, in DAGM Symposium on, Pattern Recognition, 2002, pp. 472–480

    Google Scholar 

  54. D. Cremers, A multiphase level set framework for motion segmentation, in Scale Space Theories in Computer Vision, ed. by L. Griffin, M. Lillholm (Springer, Isle of Skye, 2003), pp. 599–614

    Google Scholar 

  55. A. Mansouri, J. Konrad, Multiple motion segmentation with level sets. IEEE Trans. Image Process. 12(2), 201–220 (Feb. 2003)

    Article  Google Scholar 

  56. D. Cremers, S. Soatto, Motion competition: A variational approach to piecewise parametric motion segmentation. Int. J. Comput. Vision 62(3), 249–265 (2005)

    Google Scholar 

  57. T. Brox, A. Bruhn, J. Weickert, Variational motion segmentation with level sets, in European Conference on Computer Vision, vol. 1, 2006, pp. 471–483

    Google Scholar 

  58. H. Sekkati, A. Mitiche, Joint optical flow estimation, segmentation, and 3D interpretation with level sets. Comput. Vis. Image Underst. 103(2), 89–100 (2006)

    Article  Google Scholar 

  59. H. Sekkati, A. Mitiche, Concurrent 3D motion segmentation and 3D interpretation of temporal sequences of monocular images. IEEE Trans. Image Process. 15(3), 641–653 (2006)

    Article  Google Scholar 

  60. C. Vazquez, A. Mitiche, R. Laganiere, Joint segmentation and parametric estimation of image motion by curve evolution and level sets. IEEE Trans. Pattern Anal. Mach. Intell. 28(5), 782–793 (2006)

    Article  Google Scholar 

  61. A. Mitiche, H. Sekkati, Optical flow 3D segmentation and interpretation: A variational method with active curve evolution and level sets. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1818–1829 (Nov. 2006)

    Google Scholar 

  62. A. Mitiche, On combining stereopsis and kineopsis for space perception, in IEEE Conference on Artificial Intelligence Applications, 1984, pp. 156–160

    Google Scholar 

  63. A. Mitiche, A computational approach to the fusion of stereopsis and kineopsis, in Motion Understanding: Robot and Human Vision, ed. by W.N. Martin, J.K. Aggarwal (Kluwer Academic Publishers, Boston, 1988), pp. 81–99

    Google Scholar 

  64. S. Negahdaripour, C. Yu, A generalized brightness change model for computing optical flow, in ICCV, 1993, pp. 2–11

    Google Scholar 

  65. M. Mattavelli, A. Nicoulin, Motion estimation relaxing the constancy brightness constraint, in ICIP, vol. 2, 1994, pp. 770–774

    Google Scholar 

  66. R.P. Wildes, M.J. Amabile, A.-M. Lanzillotto, T.-S. Leu, Physically based fluid flow recovery from image sequences, in CVPR, 1997, pp. 969–975

    Google Scholar 

  67. T. Corpetti, É. Mémin, P. Pérez, Dense estimation of fluid flows. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 365–380 (2002)

    Article  Google Scholar 

  68. K. Nakayama, S. Shimojo, Intermediate and higher order aspects of motion processing, in Neural Mechanisms of Visual Perception, ed. by D.M-K. Lam, C.D. Gilbert (Portfolio Publishing Company, The Woodlands, Texas, 1989), pp. 281–296

    Google Scholar 

  69. D. Todorovic, A gem from the past: Pleikart Stumpf’s (1911) anticipation of the aperture problem, reichardt detectors, and perceived motion loss at equiluminance. Perception 25(10), 1235–1242 (1996)

    Article  Google Scholar 

  70. E. Hildreth, The Measurement of Visual Motion (MIT Press, Cambridge, 1983)

    Google Scholar 

  71. J. Kearney, W. Thompson, D. Boley, Optical flow estimation: an error analysis of gradient-based methods with local optimization. IEEE Trans. Pattern Anal. Mach. Intell. 9(2), 229–244 (1987)

    Article  Google Scholar 

  72. K. Wohn, L.S. Davis, P. Thrift, Motion estimation based on multiple local constraints and nonlinear smoothing. Pattern Recogn. 16(6), 563–570 (1983)

    Article  Google Scholar 

  73. V. Markandey, B. Flinchbaugh, Multispectral constraints for optical flow computation, in International Conference on Computer Vision, 1990, pp. 38–41

    Google Scholar 

  74. A. Mitiche, Y.F. Wang, J.K. Aggarwal, Experiments in computing optical flow with the gradient-based, multiconstraint method. Pattern Recogn. 20(2), 173–179 (1987)

    Article  Google Scholar 

  75. O. Tretiak, L. Pastor, Velocity estimation from image sequences with second order differential operators, in International Conference on Pattern Recognition and Image Processing, 1984, pp. 16–19

    Google Scholar 

  76. A. Verri, F. Girosi, V. Torre, Differential techniques for optical flow. J. Opt. Soc. Am. A 7, 912–922 (May 1990)

    Article  Google Scholar 

  77. M. Campani, A. Verri, “Computing optical flow from an overconstrained system of linear algebraic equations, in International Conference on Computer Vision, 1990, pp. 22–26

    Google Scholar 

  78. M. Tistarelli, Computation of coherent optical flow by using multiple constraints, in International Conference on Computer Vision, 1995, pp. 263–268

    Google Scholar 

  79. R. Woodham, Multiple light source optical flow, in International Conference on Computer Vision, 1990, pp. 42–46

    Google Scholar 

  80. S. Baker, I. Matthews, Lucas-kanade 20 years on: a unifying framework. Int. J. Comput. Vision 56(3), 221–255 (2004)

    Article  Google Scholar 

  81. G. Dahlquist, A. Bjork, Numerical Methods (Prentice Hall, Englewood Cliffs, 1974)

    Google Scholar 

  82. P. Ciarlet, Introduction à l’analyse numérique matricielle et à l’optimisation, 5th edn. (Masson, Paris, 1994)

    Google Scholar 

  83. J. Stoer, P. Burlisch, Introduction to Numerical Methods, 2nd edn. (Springer, New York, 1993)

    Google Scholar 

  84. R. Feghali, A. Mitiche, Fast computation of a boundary preserving estimate of optical flow. SME Vision Q. 17(3), 1–4 (2001)

    Google Scholar 

  85. L. Yuan, J. Li, B. Zhu, Y. Qian, A discontinuity-preserving optical flow algorithm, in IEEE International Symposium on Systems and Control in Aerospace and Aeronautics, 2006, pp. 450–455

    Google Scholar 

  86. W. Enkelmann, K. Kories, H.-H. Nagel, G. Zimmermann, An experimental investigation of estimation approaches for optical flow fields, in Motion Understanding: Robot and Human Vision, ed. by W.N. Martin, J.K. Aggarwal, (Chapter 6), (Kluwer Academic Publications, Boston, 1988), pp. 189–226

    Google Scholar 

  87. L. Álvarez, J. Weickert, J. Sánchez, Reliable estimation of dense optical flow fields with large displacements. Int. J. Comput. Vision 39(1), 41–56 (2000)

    Article  MATH  Google Scholar 

  88. S. Solimini, J.M. Morel, Variational Methods in Image Segmentation (Springer, New York, 2003)

    Google Scholar 

  89. S. Zhu, A. Yuille, Region competition: Unifying snakes, region growing, and bayes/mdl for multiband image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 118(9), 884–900 (1996)

    Google Scholar 

  90. T. Brox, B. Rosenhahn, D. Cremers, H.-P. Seidel, High accuracy optical flow serves 3- D pose tracking: Exploiting contour and flow based constraints, in European Conference on Computer Vision, 2006, pp. 98–111

    Google Scholar 

  91. C. Zach, T. Pock, H. Bischof, A duality based approach for realtime tv-l1 optical flow, in DAGM, 2007, pp. 214–223

    Google Scholar 

  92. A. Wedel, T. Pock, C. Zach, H. Bischof, D. Cremers, An improved algorithm for tv-l1 optical flow, in Statistical and Geometrical Approaches to Visual Motion Analysis, ed. by D. Cremers, B. Rosenhahn, A. Yuille, F. Schmidt. ser. Lecture Notes in Computer Science, (Springer, Heidelberg, 2009), pp. 23–45

    Google Scholar 

  93. A. Foi, M. Trimeche, V. Katkovnik, K. Egiazarian, Practical poissonian-gaussian noise modeling and fitting for single-image raw-data. IEEE Trans. Image Process. 17(10), 1737–1754 (2008)

    Article  MathSciNet  Google Scholar 

  94. J. Bergen, P. Anandan, K. Hanna, R. Hingorani, Hierarchical model-based motion estimation, in European Conference on Computer Vision, 1992, pp. 237–252

    Google Scholar 

  95. É. Mémin, P. Pérez, Dense estimation and object-based segmentation of the optical flow with robust techniques. IEEE Trans. Image Process. 7(5), 703–719 (1998)

    Article  Google Scholar 

  96. P. Burt, E. Adelson, The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 31(4), 532–540 (April 1983)

    Article  Google Scholar 

  97. F. Heitz, P. Perez, P. Bouthemy, Multiscale minimization of global energy functions in some visual recovery problems. CVGIP: Image Underst. 59(1), 125–134 (1994)

    Google Scholar 

  98. C. Cassisa, V. Prinet, L. Shao, S. Simoens, C.-L. Liu, Optical flow robust estimation in a hybrid multi-resolution mrf framework, in IEEE Acoustics, Speech, and, Signal Processing, 2008, pp. 793–796

    Google Scholar 

  99. W. Hackbusch, U.Trottenberg (eds.), Multigrid Methods. Lecture Notes in Mathematics, vol. 960, (Springer, New York, 1982)

    Google Scholar 

  100. W.L. Briggs, A Multigrid Tutorial (SIAM, Philadelphia, 1987)

    Google Scholar 

  101. M. Chang, A. Tekalp, M. Sezan, Simultaneous motion estimation and segmentation. IEEE Trans. Image Process. 6(9), 1326–1333 (1997)

    Google Scholar 

  102. D. Cremers, A. Yuille, A generative model based approach to motion segmentation, in German Conference on Pattern Recognition (DAGM), (Magdeburg, Sept 2003), pp. 313–320

    Google Scholar 

  103. D. Cremers, S. Soatto, Variational space-time motion segmentation, in International Conference on Computer Vision, vol 2 (Nice, France, 2003), pp. 886–892

    Google Scholar 

  104. R.A. Horn, C.R. Johnson, Matrix Analysis (Cambridge University Press, Cambridge, 1985)

    Google Scholar 

  105. J.A. Sethian, Level Set Methods and Fast Marching Methods (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  106. G. Aubert, M. Barlaud, O. Faugeras, S. Jehan-Besson, Image segmentation using active contours: calculus of variations or shape gradients? SIAM J. Appl. Math. 63(6), 2128–2154 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  107. H.-K. Zhao, T. Chan, B. Merriman, S. Osher, A variational level set approach to multiphase motion. J. Comput. Phys. 127(1), 179–195 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  108. N. Paragios, R. Deriche, Coupled geodesic active regions for image segmentation: A level set approach, in Europeean Conference on Computer vision, (Dublin, Ireland, June 2000), pp. 224–240

    Google Scholar 

  109. C. Samson, L. Blanc-Feraud, G. Aubert, J. Zerubia, A level set model for image classification. Int. J. Comput. Vision 40(3), 187–197 (2000)

    Article  MATH  Google Scholar 

  110. C. Vazquez, A. Mitiche, I. Ben Ayed, Image segmentation as regularized clustering: A fully global curve evolution method, in International Conference on Image Processing, 2004, pp. 3467–3470

    Google Scholar 

  111. T. Brox, J. Weickert, Level set segmentation with multiple regions. IEEE Trans. Image Process. 15(10), 3213–3218 (2006)

    Article  Google Scholar 

  112. L. Vese, T. Chan, A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vision 50(3), 271–293 (2002)

    Article  MATH  Google Scholar 

  113. A. Mansouri, A. Mitiche, C. Vazquez, Multiregion competition: a level set extension of region competition to multiple region partioning. Comput. Vis. Image Underst. 101(3), 137–150 (2006)

    Article  Google Scholar 

  114. I. Ben Ayed, A. Mitiche, Z. Belhadj, Polarimetric image segmentation via maximum likelihood approximation and efficient multiphase level sets. IEEE Trans. Pattern Anal. Mach. Intell. 28(9), 1493–1500 (2006)

    Article  Google Scholar 

  115. I. Ben Ayed, A. Mitiche, A partition constrained minimization scheme for efficient multiphase level set image segmentation, in International Conference on Image Processing, 2006, pp. 1641–1644

    Google Scholar 

  116. I. Ben Ayed, A. Mitiche, A region merging prior for variational level set image segmentation. IEEE Trans. Image Process. 17(12), 2301–2313 (2008)

    Google Scholar 

  117. T. Kadir, M. Brady, Unsupervised non-parametric region segmentation using level sets, in International Conference on Computer Vision, 2003, pp. 1267–1274

    Google Scholar 

  118. A. Tamtaoui, C. Labit, Constrained disparity and motion estimators for 3DTV image sequence coding. Signal Proces.: Image Commun. 4(1), 45–54 (1991)

    Article  Google Scholar 

  119. J. Liu, R. Skerjanc, Stereo and motion correspondence in a sequence of stereo images. Signal Process.: Image Commun. 5(4), 305–318 (October 1993)

    Article  Google Scholar 

  120. Y. Altunbasak, A. Tekalp, G. Bozdagi, Simultaneous motion-disparity estimation and segmentation from stereo, in IEEE International Conference on Image Processing, vol. III, 1994, pp. 73–77

    Google Scholar 

  121. R. Laganière, Analyse stéreocinétique d’une séquence d’images: Estimation des champs de mouvement et de disparité, Ph.D. dissertation, Institut national de la recherche scientifique, INRS-EMT, 1995

    Google Scholar 

  122. I. Patras, N. Alvertos, G. Tziritas, Joint disparity and motion field estimation in stereoscopic image sequences, in IAPR International Conference on Pattern Recognition, vol. I, 1996, pp. 359–363

    Google Scholar 

  123. H. Weiler, A. Mitiche, A. Mansouri, Boundary preserving joint estimation of optical flow and disparity in a sequence of stereoscopic images, in International Conference on Visualization, Imaging, and Image Processing, 2003, pp. 102–106

    Google Scholar 

  124. A. Wedel, T. Brox, T. Vaudrey, C. Rabe, U. Franke, D. Cremers, Stereoscopic scene flow computation for 3D motion understanding. Int. J. Comput. Vision 95(1), 29–51 (2011)

    Article  MATH  Google Scholar 

  125. L. Robert, R. Deriche, Dense depth map reconstruction: A minimization and regularization approach which preserves discontinuities, in European Conference on Computer Vision, 1996, pp. I:439–451

    Google Scholar 

  126. O. Faugeras, R. Keriven, Variational principles, surface evolution, PDEs, level set methods, and the stereo problem. IEEE Trans. Image Process. 7(3), 336–344 (1998)

    Google Scholar 

  127. H. Zimmer, A. Bruhn, L. Valgaerts, M. Breuß, J. Weickert, B. Rosenhahn, H.-P. Seidel, PDE-based anisotropic disparity-driven stereo vision, in Vision Modeling and Visualization, 2008, pp. 263–272

    Google Scholar 

  128. C. Wohler, 3D Computer Vision: Efficient Methods and Applications (Springer, Berlin, 2009)

    Google Scholar 

  129. C. Liu, Beyond pixels: Exploring new representations and applications for motion analysis, in Ph.D. Thesis, MIT, May 2009

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amar Mitiche .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mitiche, A., Aggarwal, J. (2014). Optical Flow Estimation. In: Computer Vision Analysis of Image Motion by Variational Methods. Springer Topics in Signal Processing, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-00711-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00711-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-00710-6

  • Online ISBN: 978-3-319-00711-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics