Skip to main content

Defect Tolerant Talbot Nanopatterning

  • Conference paper
X-Ray Lasers 2012

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 147))

Abstract

We report on a defect tolerant extreme ultraviolet (EUV) nanopatterning method. This technique is capable of printing arbitrarily shaped features arranged into periodic arrays with sub-micron resolution. The method is based on the Talbot effect. Masks with different defect layouts were fabricated and tested producing defect free prints regardless of presence of large amount of defects covering up to 1 % of the area of the mask. Numerical simulation was conducted in very good agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kneipp, K., et al.: Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78(9), 1667–1670 (1997)

    Article  ADS  Google Scholar 

  2. Liu, Z.W., et al.: Focusing surface plasmons with a plasmonic lens. Nano Lett. 5(9), 1726–1729 (2005)

    Article  ADS  Google Scholar 

  3. Liu, Z.W., Wei, Q.H., Zhang, X.: Surface plasmon interference nanolithography. Nano Lett. 5(5), 957–961 (2005)

    Article  ADS  Google Scholar 

  4. Luo, X.G., Ishihara, T.: Surface plasmon resonant interference nanolithography technique. Appl. Phys. Lett. 84(23), 4780–4782 (2004)

    Article  ADS  Google Scholar 

  5. Soukoulis, C.M., Wegener, M.: Optical metamaterials—more bulky and less lossy. Science 330(6011), 1633–1634 (2010)

    Article  ADS  Google Scholar 

  6. Vedantam, S., et al.: A plasmonic dimple lens for nanoscale focusing of light. Nano Lett. 9(10), 3447–3452 (2009)

    Article  ADS  Google Scholar 

  7. Brueck, S.R.J.: Optical and interferometric lithography—nanotechnology enablers. Proc. IEEE 93(10), 1704–1721 (2005)

    Article  Google Scholar 

  8. Chen, Y., et al.: Nanoimprint fabrication of micro-rings for magnetization reversal studies. Microelectron. Eng. 57–58, 405–410 (2001)

    Article  Google Scholar 

  9. Chou, S.Y., Krauss, P.R.: Imprint lithography with sub-10 nm feature size and high throughput. Microelectron. Eng. 35(1–4), 237–240 (1997)

    Article  Google Scholar 

  10. Himmelhaus, M., Takei, H.: Self-assembly of polystyrene nano particles into patterns of random-close-packed monolayers via chemically induced adsorption. Phys. Chem. Chem. Phys. 4(3), 496–506 (2002)

    Article  Google Scholar 

  11. Juillerat, F., et al.: Fabrication of large-area ordered arrays of nanoparticles on patterned substrates. Nanotechnology 16(8), 1311–1316 (2005)

    Article  ADS  Google Scholar 

  12. Talbot, W.H.F.: Facts relating to optical science. Philos. Mag. 9, 403 (1836)

    Google Scholar 

  13. Rayleigh, Lord, F.: On copying of diffraction gratings, and on some phenomena connected therewith. Philos. Mag. (1881)

    Google Scholar 

  14. Isoyan, A., et al.: Talbot lithography: self-imaging of complex structures. J. Vac. Sci. Technol. 27(6), 2931–2937 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation, award ECCS 0901806, the NSF ERC for Extreme Ultraviolet Science and Technology, award EEC 0310717. This research was carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Marconi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Urbanski, L., Marconi, M.C., Isoyan, A., Stein, A., Menoni, C.S., Rocca, J.J. (2014). Defect Tolerant Talbot Nanopatterning. In: Sebban, S., Gautier, J., Ros, D., Zeitoun, P. (eds) X-Ray Lasers 2012. Springer Proceedings in Physics, vol 147. Springer, Cham. https://doi.org/10.1007/978-3-319-00696-3_42

Download citation

Publish with us

Policies and ethics