Skip to main content

Guaranteed Estimates of Functionals from Solutions and Data of Interior Maxwell Problems Under Uncertainties

  • Conference paper
  • First Online:
Inverse Problems and Large-Scale Computations

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 52))

  • 924 Accesses

Abstract

We are looking for linear with respect to observations optimal estimates of solutions and right-hand sides of Maxwell equations called minimax or guaranteed estimates. We develop constructive methods for finding these estimates and estimation errors which are expressed in terms of solutions to special variational equations and prove that Galerkin approximations of the obtained variational equations converge to their exact solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Random variable ξ with values in Hilbert space H is considered as a function \(\xi: \it{\Omega} \rightarrow H\) mapping random events \(E \in \mathcal{B}\) to Borel sets in H (Borel σ-algebra in H is generated by open sets in H).

  2. 2.

    This operator exists according to the Riesz theorem.

  3. 3.

    For vectors \({\mathbf{V}}^{(1)} = \left (V _{1}^{(1)},V _{2}^{(1)},V _{3}^{(1)}\right ),\) \({\mathbf{V}}^{(2)} = \left (V _{1}^{(2)},V _{2}^{(2)},V _{3}^{(2)}\right ) \in {\mathbb{C}}^{3}\) we set \(\left ({\mathbf{V}}^{(1)},{\mathbf{V}}^{(2)}\right )_{{\mathbb{C}}^{3}} =\sum _{ i=1}^{3}V _{i}^{(2)}\bar{V }_{i}^{(2)}.\)

  4. 4.

    This problem is uniquely solvable since, owing to (22), the sesquilinear form \({a}^{{\ast}}(\cdot,\cdot )\) is also coercive in \(H_{0}({\rm rot},D)\).

  5. 5.

    Here and below we denote by \(C(\bar{D}_{j})\) a class of functions continuous in the domain \(\bar{D}_{j}.\)

  6. 6.

    By

    $$\displaystyle{\mbox{ Sp}\left (\mathbf{Q}_{j}^{i}(x)\tilde{\mathbf{R}}_{r_{ 1}}^{(i)}(x,x)\right )}$$

    we denote the traces of matrices \(\mathbf{Q}_{j}^{i}(x)\tilde{\mathbf{R}}_{j}^{(i)}(x,x)\), i.e. the sum of diagonal elements of these matrices, i = 1, 2. 

  7. 7.

    We use the following notation: if \(\mathbf{A}(\xi ) = [a_{ij}(\xi )]_{i,j=1}^{N}\) is a matrix depending on variable ξ that varies on measurable set Ω, then we define \(\int _{\it{\Omega} }\mathbf{A}(\xi )\,d\xi\) by the equality

    $$\displaystyle{\int _{\it{\Omega} }\mathbf{A}(\xi )\,d\xi = \left [\int _{\it{\Omega} }a_{ij}(\xi )\,d\xi \right ]_{i,j=1}^{N}.}$$

References

  1. Krasovskii, N.N.: Theory of Motion Control. Nauka, Moscow (1968)

    Google Scholar 

  2. Kurzhanskii, A.B.: Control and Observation under Uncertainties. Nauka, Moscow (1977)

    Google Scholar 

  3. Kurzhanskii, A.B.: Dynamic control system estimation under uncertainty conditions. Probl. Control Inform. Theory 9(6), 395–401 (1980)

    MathSciNet  Google Scholar 

  4. Kurzhanskii, A.B.: Dynamic control system estimation under uncertainty conditions. Probl. Control Inform. Theory 10(1), 33–48 (1981)

    MathSciNet  Google Scholar 

  5. Nakonechnyi, O.G.: Minimax Estimation of Functionals of Solutions to Variational Equations in Hilbert Spaces. Kiev State University, Kiev (1985)

    Google Scholar 

  6. Nakonechnyi, O.G.: Optimal Control and Estimation for Partial Differential Equations. Kyiv University, Kyiv (2004)

    Google Scholar 

  7. Nakonechnyi, O.G.: Minimax Estimates in Systems with Distributed Parameters. Acad. Sci. USSR, Inst. Cybernetics, Kyiv (1979), pp. 1–55 Preprint 79

    Google Scholar 

  8. Bensoussan, A.: Filtrage Optimale les Systems Lineares. Dunod, Paris (1971)

    Google Scholar 

  9. Bencala K.E., Seinfield J.H.: Distributed parameter filtering: Boundary noise and discrete observations. Int. J. Syst. Sch. 10(5), 493–512 (1979)

    Article  MATH  Google Scholar 

  10. Shestopalov, Y., Podlipenko, Y., Prishlyak V.: Estimation of solutions of Helmholtz problems with uncertain data. In Proceedings 2010 International Symposium on Electromagnetic Theory EMTS 2010, Berlin, August 15–19, 2010 (pp. 621–623)

    Google Scholar 

  11. Shestopalov, Y., Podlipenko, Y., Prishlyak V.: Estimation under uncertainties of acoustic and electromagnetic fields from noisy observations. arXiv:0910.2331 (2009)

    Google Scholar 

  12. Nakonechnyi, O.G., Pavluchenko, O.G., Podlipenko, Yu.K.: On prediction of solutions to hyperbolic equations. Probl. Upravl. Inform. 1, 98–113 (1995)

    Google Scholar 

  13. Kirichenko, N.F., Nakonechnyi, O.G.: A minimax approach to recurrent estimation of the states of linear dynamical systems. Kibernetika 4, 52–55 (1977)

    Google Scholar 

  14. Podlipenko, Yu.K., Ryabikova, A.V.: Optimal estimation of parameters of noeter boundary value problems for linear ordinary differential equations of order n under uncertainties. Dopovidi Acad. Nauk Ukrainy 11, 59–67 (2005)

    MathSciNet  Google Scholar 

  15. Podlipenko, Yu.K., Grishchuk, N.V.: Minimax estimation of solutions to degenerated Neumann boundary value problems for elliptic equations. Syst. Dosl. Inf. Techn. 2, 104–128 (2004)

    Google Scholar 

  16. Cessenat, M.: Mathematical Methods in Electromagnetism. Linear Theory and Applications. World Scientific, Singapore (1996)

    MATH  Google Scholar 

  17. Lions, J.L.: Contrôle Optimal de Systèmes Gouvernés par des Équations Aux Dérivées Partielles. Dunod, Paris (1968)

    MATH  Google Scholar 

  18. Schwab, C., Gittelson, C.J.: Sparse tensor discretization of high-dimensional parametric and stochastic PDEs. Acta Numerica. doi: 10.1017/S0962492911000055

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Visby program of the Swedish Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yury Podlipenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Podlipenko, Y., Shestopalov, Y. (2013). Guaranteed Estimates of Functionals from Solutions and Data of Interior Maxwell Problems Under Uncertainties. In: Beilina, L., Shestopalov, Y. (eds) Inverse Problems and Large-Scale Computations. Springer Proceedings in Mathematics & Statistics, vol 52. Springer, Cham. https://doi.org/10.1007/978-3-319-00660-4_10

Download citation

Publish with us

Policies and ethics