Skip to main content

UMH’s Navigation in Unknown Environment Based on Pre-planning Guided Fuzzy Reactive Controller

  • Conference paper
Contemporary Challenges and Solutions in Applied Artificial Intelligence

Part of the book series: Studies in Computational Intelligence ((SCI,volume 489))

  • 1081 Accesses

Abstract

Based on the sparse A* search (SAS) algorithm and the fuzzy reactive controller (FRC), we propose a novel method of navigation for unmanned helicopter (UMH). SAS is applied to plan a path based on the understanding of pre-known obstacles and threats. Then, UMH travels along the path. The FRC, which employs Mamdani fuzzy methodology and pre-planning guidance, monitors the flight process and react in real-time to keep flight safety. Simulations show that this approach can find out the global optimal path and realize dynamic navigation for UMH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tisdale, J., Kim, Z.W., Hedrick, J.K.: Autonomous UAV path planning and estimation: An online path planning framework for cooperative search and localization. IEEE Robotics and Automation Magazine 16(2), 35–42 (2009)

    Article  Google Scholar 

  2. Scherer, S., Singh, S., Chamberlain, L., Elgersma, M.: Flying Fast and Low Among Obstacles: Methodology and Experiments. Int. J. Robot. Res. 27(5), 549–574 (2008)

    Article  Google Scholar 

  3. Liu, Z., Shi, J.G., Gao, X.G.: Application of voronoi diagram in flight path planning. Acta Aeronautica et Astronautica Sinica 29(suppl.), 15–19 (2008) (in Chinese)

    Google Scholar 

  4. Park, J.J., Kim, J.H., Song, J.B.: Path planning for a robot manipulator based on probabilistic roadmap and reinforcement learning. Int. J. Control Autom. Syst. 5(6), 674–680 (2007)

    Google Scholar 

  5. Szczerba, R.J., Galkowski, P., Glickstein, I.S., Ternullo, N.: Robust Algorithm for Real-Time Route Planning. IEEE Trans. Aero. Elec. Sys. 36(3), 869–878 (2000)

    Article  Google Scholar 

  6. Stenza, A.: CD*: a Real-time resolution optimal re-planning for globally constraint problem. In: Proceedings of the 18th National Conference Artificial Intelligence, pp. 1088–1096 (2002)

    Google Scholar 

  7. Borenstein, J., Koren, Y.: Thevector field histogram–Fast obstacle avoidance for mobile robots. IEEE Trans. Rob. Autom. 7(3), 278–288 (1991)

    Article  Google Scholar 

  8. Yen, J., Langari, R.: Fuzzy Logic: Intelligence, Control, and Information. Prentice Hall (1999)

    Google Scholar 

  9. Mandani, E.K.: Application of Fuzzy Logic to Approximate Reasoning, Using Linguistic Synthesis. Queen Mary College (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Chen, X., Meng, Z., He, W., Wang, K. (2013). UMH’s Navigation in Unknown Environment Based on Pre-planning Guided Fuzzy Reactive Controller. In: Ali, M., Bosse, T., Hindriks, K., Hoogendoorn, M., Jonker, C., Treur, J. (eds) Contemporary Challenges and Solutions in Applied Artificial Intelligence. Studies in Computational Intelligence, vol 489. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00651-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00651-2_26

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00650-5

  • Online ISBN: 978-3-319-00651-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics