Advertisement

Moving and Calling: Mobile Phone Data Quality Measurements and Spatiotemporal Uncertainty in Human Mobility Studies

  • Corina IovanEmail author
  • Ana-Maria Olteanu-Raimond
  • Thomas Couronné
  • Zbigniew Smoreda
Chapter
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)

Abstract

In the past few years, mobile network data are considered as a useful complementary source of information for human mobility research. Mobile phone datasets contain massive amount of spatiotemporal localization of millions of users. The analyze of such huge amount of data for mobility studies reveals many issues such as time computation, users sampling, spatiotemporal heterogeneities, semantic incompleteness. In this chapter, two issues are addressed: (1) location sampling aiming at decreasing computation time without losing useful information on the one hand and to eliminate data considered as noise in the other hand and (2) users sampling whose goal is to select users having relevant information. For the first issue two measures allowing eliminating redundant information and ping-pong positions are proposed. The second issue requires the definition of a set of measures allowing estimating mobile phone data quality. New methods to qualify mobile phone data at local and global level are proposed. The methods are tested on one-day mobile phone data coming from technical mobile network probes.

Keywords

Mobile Phone Location Point Human Mobility Successive Point User Sampling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to thank our colleague, Cezary Ziemlicki, who preprocessed data and has discussed with us many technical issues related to this chapter.

References

  1. Andrienko G, Andrienko N, Bak P, Bremm S et al (2010) A framework for using self-organising maps to analyse spatio-temporal patterns, exemplified by analysis of mobile phone usage. J Locat Based Serv 4(3–4):200–221CrossRefGoogle Scholar
  2. Andrienko G, Andrienko N, Bak P, Keim D, Kisilevich S, Wrobel S (2011) A conceptual framework and taxonomy of techniques for analyzing movement. J Visual Lang Comput 22(3):213–232CrossRefGoogle Scholar
  3. Andrienko G, Andrienko N, Hurter C, Rinzivillo S, Wrobel S (2012) Scalable analysis of movement data for extracting and exploring significant places. In: Proceedings of IEEE transactions on visualization and computer graphicsGoogle Scholar
  4. Becker R, Cáceres R, Hanson H, Isaacman S, Loh JM et al (2013) Anonymous location data from cellular phone networks sheds light on how people move around on a large scale. Commun ACM 56(1):74–82CrossRefGoogle Scholar
  5. Caceres N, Wideberg J, Benitez F (2007) Deriving origin-destination data from a mobile phone network. Intel Trans Syst IET 1(1):15–26CrossRefGoogle Scholar
  6. Calabrese F, Di Lorenzo G, Liu L, Ratti C (2011a) Estimating origin-destination flows using opportunistically collected mobile phone location data from one million users in Boston metropolitan area. IEEE Pervasive Comput 10(4):36–44CrossRefGoogle Scholar
  7. Calabrese F, Smoreda Z, Blondel V, Ratti C (2011b) Interplay between telecommunications and face-to-face interactions—a study using mobile phone data. PLoS One 6(7):e208814CrossRefGoogle Scholar
  8. Couronné T, Smoreda Z, Olteanu AM (2011a) Chatty mobiles: individual mobility and communication patterns. NetMob, BostonGoogle Scholar
  9. Couronné T, Olteanu AM, Smoreda Z (2011) Urban mobility: velocity and uncertainty in mobile phone data. In: Proceedings of Privacy, security, risk and trust (passat), 2011 IEEE third international conference on and 2011 IEEE third international conference on social computing (socialcom), pp 1425–30Google Scholar
  10. Csáji BC, Browet A, Traag VA, Delvenne JC, Huens E et al (2012) Exploring the mobility of mobile phone users. Phys A 392(6):1459–1473Google Scholar
  11. Diminescu D, Licoppe C, Smoreda Z, Ziemlicki C (2009) Tailing untethered mobile user: studying urban mobilities and communication practices. In: Ling R, Campbell SW (eds) The reconstruction of space and time. Mobile communication practices. Transaction Publishers, New Brunswick, NJ, pp 17–37Google Scholar
  12. Ekiz N, Salih T, Kucukoner S, Fidanboylu K (2005) An overview of handoff techniques in cellular networks. Int J Inf Technol 2(3):132–136Google Scholar
  13. Feher Z, Veres A, Heszberger Z (2012) Ping-pong reduction using sub cell movement detection. In: Proceedings of vehicular technology conference (VTC Spring)Google Scholar
  14. González MC, Hidalgo CA, Barabási AL (2008) Understanding individual human mobility patterns. Nature 453:779–782CrossRefGoogle Scholar
  15. Gudmundson M (1991) Analysis of handover algorithms. In: Proceedings of 4th IEEE vehicular technology conference, gateway to the future technology in motionGoogle Scholar
  16. Haoyi X, Zhang D, Zhang D, Gauthier V (2012) Predicting mobile phone user locations by exploiting collective behavioral patterns. In: Proceedings of the 9th IEEE conference on ubiquitous intelligence and computing (UIC’12), Fukuoka, Japan, 2012Google Scholar
  17. Hasan S, Schneider CM, Ukkusuri SV, González MC (2012) Spatiotemporal patterns of urban human mobility. J Stat Phys 151:304–318CrossRefGoogle Scholar
  18. He D, Chi C, Chan S, Chen C, Bu J, Yin M (2010) A simple and robust vertical handoff algorithm for heterogeneous wireless mobile networks. Wireless Pers Commun 59(2):361–373CrossRefGoogle Scholar
  19. Kang C, Liu Y, Mei Y, Xu L (2012) Evaluating the representativeness of mobile positioning data for human mobility patterns. GIScience, ColumbusGoogle Scholar
  20. Olteanu Raimond AM, Trasarti R, Couronne T, Giannotti F, Nanni M et al.(2011) GSM data analysis for tourism application. In: Proceedings of 7th international symposium on spatial accuracy assessment in natural resources and environmental sciencesGoogle Scholar
  21. Olteanu Raimond AM, Couronne T, Fen-Chong J, Smoreda Z (2012) Le Paris des visiteurs, qu’en disent les téléphones mobiles? Inférence des pratiques spatiales et fréquentations des sites touristiques en Ile-de-France. Revue Internationale de la Géomantique 3:413–437Google Scholar
  22. Onnela JP, Arbesman S, González MC, Barabási AL, Christakis NA (2011) Geographic constraints on social network groups. PLoS One 6(4):e16939CrossRefGoogle Scholar
  23. Phithakkitnukoon S, Horanont T, Di Lorenzo G, Shibasaki R, Ratti C (2010) Activity-aware map: identifying human daily activity pattern using mobile phone data. In: Proceedings of international conference on pattern recognition, Workshop on human behavior understanding, pp 14–25Google Scholar
  24. Pollini GP (1996) Trends in handover design. IEEE Commun Mag 34(3):82–90CrossRefGoogle Scholar
  25. Ranjan G, Zang H, Zhang Z, Bolot J (2012) Are call detail records biased for sampling human mobility? ACM SIGMOBILE Mob Comput Commun Rev 16(3):33–44CrossRefGoogle Scholar
  26. Schulz D, Bothe S, Körner C (2012) Human mobility from GSM data-a valid alternative to GPS? Mobile data challenge 2012 workshop, June 18–19, Newcastle, UKGoogle Scholar
  27. Sevtsuk A, Ratti C (2010) Does urban mobility have a daily routine? Learning from the aggregate data of mobile networks. J Urban Technol 17(1):41–60CrossRefGoogle Scholar
  28. Smoreda Z, Olteanu-Raimond AM, Couronné T (2013) Spatiotemporal data from mobile phones for personal mobility assessment. In: Zmud J, Lee-Gosselin M, Carrasco JA, Munizaga MA (eds) Transport survey methods: best practice for decision making. Emerald Group Publishing, LondonGoogle Scholar
  29. Song C, Qu Z, Blumm N, Barabási AL (2010) Limits of predictability in human mobility. Science 327:1018–1021CrossRefGoogle Scholar
  30. Steenbruggen J, Borzacchiello MT, Nijkamp P, Scholten H (2011) Mobile phone data from GSM networks for traffic parameter and urban spatial pattern assessment: a review of applications and opportunities. GeoJournal 78:223–243CrossRefGoogle Scholar
  31. Tiru M, Ahas R (2012) Passive anonymous mobile positioning data for tourism statistics. In: Proceedings of 11th global forum on tourism statistics, IcelandGoogle Scholar
  32. Vieira MR, Frias-Martinez E, Bakalov P, Frias-Martinez V, Tsotras VJ (2010) Querying spatio-temporal patterns in mobile phone-call databases. In: Proceedings of eleventh international conference on mobile data management (MDM), pp 239–248Google Scholar
  33. Yuan Y, Raubal M, Liu Y (2011) Correlating mobile phone usage and travel behavior—a case study of Harbin, China. Comput Environ Urban Syst 36(2):118–130CrossRefGoogle Scholar
  34. Zhang Y, Qin X, Dong S, Ran B (2010) Daily O-D matrix estimation using cellular probe data. In: Proceedings of 89th annual meeting transportation research boardGoogle Scholar
  35. Zhao N, Huang W, Song G, Xie K (2011) Discrete trajectory prediction on mobile data. In: APWeb’11 Proceedings of the 13th Asia-Pacific web conference on web technologies and applications, pp 77–88Google Scholar
  36. Zheng Y, Li Q, Chen Y, Xie X, Ma WY (2008) Understanding mobility based on GPS data. In: Proceedings of the 10th international conference on ubiquitous computingGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Corina Iovan
    • 1
    Email author
  • Ana-Maria Olteanu-Raimond
    • 1
    • 2
  • Thomas Couronné
    • 1
  • Zbigniew Smoreda
    • 1
  1. 1.Sociology and Economics of Networks and Services departmentOrange Labs R&DParisFrance
  2. 2.Laboratoire CogitInstitut Géographique NationalSaint-MandéFrance

Personalised recommendations