Field Matter Coupling and Two-Level Systems

Part of the Graduate Texts in Physics book series (GTP)


In this chapter, we start with the theoretical description of the coupling of a classical light field realized, e.g., by a laser, to a quantum mechanical system. Different gauges, related by unitary transformations are then introduced. After the study of the Volkov solution of the time-dependent Schrödinger equation for the free particle in a laser field, some analytically solvable driven two-level systems will be discussed in the remainder of this chapter. The phenomenon of Rabi oscillations and the fundamental rotating wave approximation are thereby going to be reviewed.


Unitary Transformation Laser Field Rabi Frequency Hamilton Matrix Rotating Wave Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A.D. Bandrauk, in Molecules in Laser Fields, ed. by A.D. Bandrauk (Dekker, New York, 1994), Chap. 1, pp. 1–69 Google Scholar
  2. 2.
    W.P. Schleich, Quantum Optics in Phase Space (Wiley-VCH, Berlin, 2001) zbMATHCrossRefGoogle Scholar
  3. 3.
    M. Göppert-Mayer, Ann. Phys. (Leipz.) 9, 273 (1931) CrossRefGoogle Scholar
  4. 4.
    D. Bauer, D.B. Milôsevíc, W. Becker, Phys. Rev. A 75, 023415 (2005) ADSCrossRefGoogle Scholar
  5. 5.
    F.H.M. Faisal, Phys. Rev. A 75, 063412 (2007) ADSCrossRefGoogle Scholar
  6. 6.
    H.A. Kramers, Collected Scientific Papers (North-Holland, Amsterdam, 1956) Google Scholar
  7. 7.
    W.C. Henneberger, Phys. Rev. Lett. 21, 838 (1968) ADSCrossRefGoogle Scholar
  8. 8.
    J.C.A. Barata, W.F. Wreszinski, Phys. Rev. Lett. 84, 2112 (2000) ADSCrossRefGoogle Scholar
  9. 9.
    S. Stenholm, in Quantum Dynamics of Simple Systems, ed. by G.L. Oppo, S.M. Barnett, E. Riis, M. Wilkinson (IOP, Bristol, 1996), p. 267 Google Scholar
  10. 10.
    N. Rosen, C. Zener, Phys. Rev. 40, 502 (1932) ADSzbMATHCrossRefGoogle Scholar
  11. 11.
    I.S. Gradshteyn, I.M. Rhyzik, Tables of Integrals Series and Products (Academic Press, San Diego, 1994), Sect. 9.1 Google Scholar
  12. 12.
    L.D. Landau, Phys. Z. Sowjetunion 2, 46 (1932) Google Scholar
  13. 13.
    C. Zener, Proc. R. Soc. Lond. A 137, 696 (1932) ADSCrossRefGoogle Scholar
  14. 14.
    D. Coker, in Computer Simulation in Chemical Physics, ed. by M.P. Allen, D.J. Tildesley (Kluwer, Amsterdam, 1993) Google Scholar
  15. 15.
    D.H. Kobe, E.C.T. Wen, J. Phys. A 15, 787 (1982) ADSCrossRefGoogle Scholar
  16. 16.
    H. Haken, Licht und Materie, Bd. 1: Elemente der Quantenoptik (BI Wissenschaftsverlag, Mannheim, 1989) Google Scholar
  17. 17.
    J.H. Shirley, Phys. Rev. 138, B979 (1965) ADSCrossRefGoogle Scholar
  18. 18.
    M. Weissbluth, Photon-Atom Interactions (Academic Press, New York, 1989) Google Scholar
  19. 19.
    U. Weiss, Quantum Dissipative Systems, 2nd edn. (World Scientific, Singapore, 1999) zbMATHCrossRefGoogle Scholar
  20. 20.
    D.J. Tannor, Introduction to Quantum Mechanics: A Time-Dependent Perspective (University Science Books, Sausalito, 2007). And Refs. therein Google Scholar
  21. 21.
    J. von Neumann, E. Wigner, Phys. Z. 30, 467 (1929) zbMATHGoogle Scholar
  22. 22.
    A.G. Fainshteyn, N.L. Manakov, L.P. Rapoport, J. Phys. B 11, 2561 (1978) ADSCrossRefGoogle Scholar
  23. 23.
    T. Timberlake, L.E. Reichl, Phys. Rev. A 59, 2886 (1999) ADSCrossRefGoogle Scholar
  24. 24.
    H. Goldstein, C. Poole, J. Safko, Classical Mechanics, 3rd edn. (Addison Wesley, San Francisco, 2002) Google Scholar
  25. 25.
    R.C. Hilborn, Am. J. Phys. 50, 982 (1982) ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikTechnische Universität DresdenDresdenGermany

Personalised recommendations