Theoretical Femtosecond Physics pp 79-98 | Cite as

# Field Matter Coupling and Two-Level Systems

Chapter

- 1.9k Downloads

## Abstract

In this chapter, we start with the theoretical description of the coupling of a classical light field realized, e.g., by a laser, to a quantum mechanical system. Different gauges, related by unitary transformations are then introduced. After the study of the Volkov solution of the time-dependent Schrödinger equation for the free particle in a laser field, some analytically solvable driven two-level systems will be discussed in the remainder of this chapter. The phenomenon of Rabi oscillations and the fundamental rotating wave approximation are thereby going to be reviewed.

## Keywords

Unitary Transformation Laser Field Rabi Frequency Hamilton Matrix Rotating Wave Approximation
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

- 1.A.D. Bandrauk, in
*Molecules in Laser Fields*, ed. by A.D. Bandrauk (Dekker, New York, 1994), Chap. 1, pp. 1–69 Google Scholar - 2.W.P. Schleich,
*Quantum Optics in Phase Space*(Wiley-VCH, Berlin, 2001) zbMATHCrossRefGoogle Scholar - 3.M. Göppert-Mayer, Ann. Phys. (Leipz.)
**9**, 273 (1931) CrossRefGoogle Scholar - 4.D. Bauer, D.B. Milôsevíc, W. Becker, Phys. Rev. A
**75**, 023415 (2005) ADSCrossRefGoogle Scholar - 5.F.H.M. Faisal, Phys. Rev. A
**75**, 063412 (2007) ADSCrossRefGoogle Scholar - 6.H.A. Kramers,
*Collected Scientific Papers*(North-Holland, Amsterdam, 1956) Google Scholar - 7.W.C. Henneberger, Phys. Rev. Lett.
**21**, 838 (1968) ADSCrossRefGoogle Scholar - 8.J.C.A. Barata, W.F. Wreszinski, Phys. Rev. Lett.
**84**, 2112 (2000) ADSCrossRefGoogle Scholar - 9.S. Stenholm, in
*Quantum Dynamics of Simple Systems*, ed. by G.L. Oppo, S.M. Barnett, E. Riis, M. Wilkinson (IOP, Bristol, 1996), p. 267 Google Scholar - 10.N. Rosen, C. Zener, Phys. Rev.
**40**, 502 (1932) ADSzbMATHCrossRefGoogle Scholar - 11.I.S. Gradshteyn, I.M. Rhyzik,
*Tables of Integrals Series and Products*(Academic Press, San Diego, 1994), Sect. 9.1 Google Scholar - 12.L.D. Landau, Phys. Z. Sowjetunion
**2**, 46 (1932) Google Scholar - 13.C. Zener, Proc. R. Soc. Lond. A
**137**, 696 (1932) ADSCrossRefGoogle Scholar - 14.D. Coker, in
*Computer Simulation in Chemical Physics*, ed. by M.P. Allen, D.J. Tildesley (Kluwer, Amsterdam, 1993) Google Scholar - 15.D.H. Kobe, E.C.T. Wen, J. Phys. A
**15**, 787 (1982) ADSCrossRefGoogle Scholar - 16.H. Haken,
*Licht und Materie, Bd. 1: Elemente der Quantenoptik*(BI Wissenschaftsverlag, Mannheim, 1989) Google Scholar - 17.J.H. Shirley, Phys. Rev.
**138**, B979 (1965) ADSCrossRefGoogle Scholar - 18.M. Weissbluth,
*Photon-Atom Interactions*(Academic Press, New York, 1989) Google Scholar - 19.U. Weiss,
*Quantum Dissipative Systems*, 2nd edn. (World Scientific, Singapore, 1999) zbMATHCrossRefGoogle Scholar - 20.D.J. Tannor,
*Introduction to Quantum Mechanics: A Time-Dependent Perspective*(University Science Books, Sausalito, 2007). And Refs. therein Google Scholar - 21.J. von Neumann, E. Wigner, Phys. Z.
**30**, 467 (1929) zbMATHGoogle Scholar - 22.A.G. Fainshteyn, N.L. Manakov, L.P. Rapoport, J. Phys. B
**11**, 2561 (1978) ADSCrossRefGoogle Scholar - 23.T. Timberlake, L.E. Reichl, Phys. Rev. A
**59**, 2886 (1999) ADSCrossRefGoogle Scholar - 24.H. Goldstein, C. Poole, J. Safko,
*Classical Mechanics*, 3rd edn. (Addison Wesley, San Francisco, 2002) Google Scholar - 25.R.C. Hilborn, Am. J. Phys.
**50**, 982 (1982) ADSCrossRefGoogle Scholar

## Copyright information

© Springer International Publishing Switzerland 2013