Skip to main content

A Short Introduction to Laser Physics

  • Chapter
  • 2171 Accesses

Part of the book series: Graduate Texts in Physics ((GTP))

Abstract

In this chapter, we start by reviewing Einstein’s derivation of Planck’s radiation law, whereby the Einstein coefficients for stimulated and spontaneous radiative processes are introduced. Generalizing to the case of non-equilibrium, conditions for laser activity are derived. After a brief discussion of possible realizations of the laser principle, we discuss the generation of short laser pulses by the superposition of a fundamental and side-band frequencies. The carrier envelope phase is then discussed as well as the characterization of laser pulses by windowed Fourier transforms that concludes this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    With ν=c/λ, dν=−c/λ 2dλ we get \(\rho(\lambda)\mathrm {d}\lambda=8\pi hc/\lambda^{5}\mathrm {d}\lambda (\exp \{\frac{hc}{kT\lambda} \}-1 )^{-1}\).

  2. 2.

    Note that in the previous section the rate was proportional to ρ and here it is proportional to the dimensionless variable n; we therefore have to use a different symbol for the coefficients.

  3. 3.

    Maser stands for “Microwave amplification by stimulated emission of radiation”.

  4. 4.

    Defined as the full width at half maximum (FWHM) of the intensity curve.

References

  1. H. Haken, Licht und Materie, Bd. 1: Elemente der Quantenoptik (BI Wissenschaftsverlag, Mannheim, 1989)

    Google Scholar 

  2. H. Haken, Licht und Materie, Bd. 2: Laser (BI Wissenschaftsverlag, Mannheim, 1994)

    Google Scholar 

  3. K. Shimoda, Introduction to Laser Physics (Springer, Berlin, 1984)

    Book  Google Scholar 

  4. J.P. Gordon, H.J. Zeiger, C.H. Townes, Phys. Rev. 95, 282 (1954)

    Article  ADS  Google Scholar 

  5. T.H. Maiman, Phys. Rev. Lett. 4, 564 (1960)

    Article  ADS  Google Scholar 

  6. W. Demtröder, Laser Spectroscopy (Springer, Berlin, 1996)

    Book  Google Scholar 

  7. F. Westermann, Laser (Teubner, Leipzig, 1976)

    Google Scholar 

  8. M. Wollenhaupt, A. Assion, T. Baumert, in Springer Handbook of Lasers and Optics, ed. by F. Träger (Springer, Berlin, 2007), Chap. 12, pp. 937–983

    Chapter  Google Scholar 

  9. T. Udem, J. Reichert, R. Holzwarth, T.W. Hänsch, Opt. Lett. 24, 881 (1999)

    Article  ADS  Google Scholar 

  10. D.H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, T. Tschudi, Opt. Lett. 24, 631 (1999)

    Article  ADS  Google Scholar 

  11. R. Trebino, Frequency Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic, Boston, 2000)

    Book  Google Scholar 

  12. K. Hirai, E.J. Heller, P. Gaspard, J. Chem. Phys. 103, 5970 (1995)

    Article  ADS  Google Scholar 

  13. C.W. Gardiner, P. Zoller, Quantum Noise, 3rd edn. (Springer, Berlin, 2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix: Some Gaussian Integrals

Appendix: Some Gaussian Integrals

Throughout this book, Gaussian integrals will be encountered. For complex valued parameters a and b with \(\operatorname{Re} {a}\geq0\), the following formulae hold:

$$\begin{aligned} \int_{-\infty}^{\infty}\mathrm{d}x \exp\bigl\{-a x^2\bigr\} =&\sqrt{\frac {\pi}{a}} \end{aligned}$$
(1.28)
$$\begin{aligned} \int_{-\infty}^{\infty}\mathrm{d}x x \exp\bigl\{-a x^2\bigr\} =&0 \end{aligned}$$
(1.29)
$$\begin{aligned} \int_{-\infty}^{\infty}\mathrm{d}x x^2\exp\bigl \{-a x^2\bigr\} =& \biggl(\frac{1}{2a} \biggr)\sqrt{ \frac{\pi}{a}} \end{aligned}$$
(1.30)
$$\begin{aligned} \int_{-\infty}^{\infty}\mathrm{d}x \exp\bigl\{-a x^2+b x\bigr\} =&\sqrt{\frac {\pi}{a}} \exp \biggl\{ \frac{b^2}{4a} \biggr\} \end{aligned}$$
(1.31)
$$\begin{aligned} \int_{-\infty}^{\infty}\mathrm{d}x x \exp\bigl\{-a x^2+b x\bigr\} =& \biggl(\frac{b}{2a} \biggr)\sqrt{ \frac{\pi}{a}} \exp \biggl\{\frac{b^2}{4a} \biggr\} \end{aligned}$$
(1.32)
$$\begin{aligned} \int_{-\infty}^{\infty}\mathrm{d}x x^2 \exp\bigl \{-a x^2+b x\bigr\} =& \biggl(\frac{1}{2a} \biggr) \biggl(1+ \frac{b^2}{2a} \biggr)\sqrt {\frac{\pi}{a}} \exp \biggl\{ \frac{b^2}{4a} \biggr\} . \end{aligned}$$
(1.33)

A generalization of one of the formulae above to the case of a d-dimensional integral that is helpful is

$$\begin{aligned} \int\mathrm{d}^dx\exp\{-\boldsymbol {x}\cdot\mathbf{A}\boldsymbol {x}+\boldsymbol {b}\cdot \boldsymbol {x}\}= \sqrt{\frac{\pi^d}{\det\mathbf{A}}} \exp \biggl\{\frac{1}{4}\boldsymbol {b}\cdot \mathbf{A}^{-1}\boldsymbol {b} \biggr\} , \end{aligned}$$
(1.34)

valid for positive definite symmetric matrices A. As in the 1d-case, it can be proven by using a “completion of the square” argument. Furthermore, the convention that non-indication of the boundaries implies integration over the whole range of the independent variables has been used.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grossmann, F. (2013). A Short Introduction to Laser Physics. In: Theoretical Femtosecond Physics. Graduate Texts in Physics. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00606-2_1

Download citation

Publish with us

Policies and ethics