Skip to main content

Space, Time, and Space–Time

  • Chapter
  • First Online:
  • 1520 Accesses

Abstract

Let me start this chapter with a somewhat “philosophic” introduction, concerning the so-called reality of physical models. As a physicist, I am a bit reluctant to deal with similar topics which—strictly speaking—are beyond my professional expertise.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   37.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The times t 1, t 2 and the positions x 1, x 2 are obviously referred to the clock and to the coordinate system of a given observer. For a different observer the corresponding values of times and of the spatial coordinates could be different. What matters, in this example, is only the variation of the position with time.

  2. 2.

    This scenario is also called “Emerging Block Universe,” see for instance the contribution of G.F. R. Ellis to the book Springer Handbook of Spacetime [32].

  3. 3.

    Obviously, what is meant for the past and future may vary according to the considered observer, and may also depend on the local geometric properties characterizing the considered portion of space–time.

  4. 4.

    This scenario is also called “Block Universe”, or frozen Universe. See for instance P. C. W. Davies [33].

  5. 5.

    See also the discussion in the book by J. B. Barbour [34].

  6. 6.

    Such observers, for kinematic or geometric reasons, would be “causally disconnected” from us, namely they could not send us information through signals that do not exceed the speed of light.

  7. 7.

    Discussed in a recent paper by J. D. Barrow and D. J. Shaw [35].

  8. 8.

    We are referring to the so-called four-velocity vector (or to the associated four momentum vector) representing, geometrically, the tangent to the world-line of the given object.

  9. 9.

    According to this principle, an antiparticle of positive energy corresponds to a particle of negative energy which propagates backward in time.

  10. 10.

    Unless, for some reasons, “superluminal” matter with modulus of the space–time velocity equal to 2c, 3c, etc. does not interact at all with the “subluminal” matter present in our world, and is thus completely disconnected by our physical evidence.

  11. 11.

    I wish to thank my colleague Paolo Cea for an interesting discussion on this point.

  12. 12.

    Here “different” means, in particular, “not diffeomorphic,” i.e., geometries which cannot be linked by coordinate transformations of differentiable and invertible type.

  13. 13.

    See, e.g., the paper by N. Kaloper and K. A. Olive [36].

  14. 14.

    See, e.g., the review paper by E. Caianiello [37]. Phase space is a higher-dimensional space in which the number of dimensions is doubled, since to any given coordinate is associated a new one corresponding to the so-called canonically conjugate momentum.

  15. 15.

    The so-called geodesic trajectories are the world-lines determined by the space–time geometry. The set of all geodesics fully identifies a given space–time and uniquely determines its physical and geometric properties.

  16. 16.

    A space–time manifold is called “geodesically complete” when all the physical geodesic trajectories can be arbitrarily extended forward and backward in time, without limits and without running into any singularity.

  17. 17.

    They are transformations in which the metric is multiplied by an appropriate scalar function of the coordinates. Using this type of transformations it is possible to pass from a geometry where the trajectory of a given particle is not a geodesic to a new geometry where the same trajectory is instead a geodesic.

  18. 18.

    This example was discussed in a paper I wrote in 2004 [38].

  19. 19.

    Not us, but our descendants! Because the possible future singularity would be distant in time billions of years.

References

  1. R. Durrer, The Cosmic Microwave Background (Cambridge University Press, Cambridge, 2008)

    Book  Google Scholar 

  2. S. Weinberg, Cosmology (Oxford University Press, Oxford, 2008)

    MATH  Google Scholar 

  3. M. Gasperini, Lezioni di Cosmologia Teorica (Spriger, Milano, 2012)

    Book  MATH  Google Scholar 

  4. E.G. Adelberger, B.R. Heckel, A.E. Nelson, Ann. Rev. Nucl. Part. Sci. 53, 77 (2003)

    Article  ADS  Google Scholar 

  5. E. Fischbach, D. Sudarsky, A. Szafer, C. Talmadge, S.H. Aronson, Phys. Rev. Lett. 56, 3 (1986)

    Article  ADS  Google Scholar 

  6. R. Barbieri, S. Cecotti, Z. Phys. C 33, 255 (1986)

    Google Scholar 

  7. M. Gasperini, Phys. Rev. D 40, 325 (1989)

    Google Scholar 

  8. M. Gasperini, Phys. Rev. D 63, 047301 (2001)

    Google Scholar 

  9. T. Taylor, G. Veneziano, Phys. Lett. B 213, 459 (1988)

    Google Scholar 

  10. M. Gasperini, Phys. Lett. B 327, 314 (1994); M. Gasperini, G. Veneziano, Phys. Rev. D 50, 2519 (1994)

    Google Scholar 

  11. J. Khoury, A. Weltman, Phys. Rev. D 69, 044026 (2004)

    Google Scholar 

  12. R. Sundrum, Phys. Rev. D 69, 044014 (2004)

    Google Scholar 

  13. T. Kaluza, Sitzungsber. Preuss. Akad. Wiss. Berlin 1921, 966 (1921); O. Klein, Z. Phys. 37, 895 (1926)

    Google Scholar 

  14. N. Arkani Hamed, S. Dimopoulos, G.R. Dvali, Phys. Lett. B 429, 263 (1998)

    Google Scholar 

  15. I. Antoniadis, Phys. Lett. B 246, 377 (1990)

    Google Scholar 

  16. L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 4960 (1999)

    Google Scholar 

  17. A.G. Riess et al., Astron. J. 116, 1009 (1998); S. Perlmutter et al., Astrophys. J 517, 565 (1999)

    Google Scholar 

  18. G. Dvali, G. Gabadadze, M. Porrati, Phys. Lett. B 485, 208 (2000)

    Google Scholar 

  19. I. Slatev, L. Wang, P.J. Steinhardt, Phys. Rev. Lett. 82, 869 (1999)

    Google Scholar 

  20. C. Armendariz-Picon, V. Mukhanov, P.J. Steinhardt, Phys. Rev. Lett. 85, 4438 (2000)

    Article  ADS  Google Scholar 

  21. M. Gasperini, Phys. Rev. D 64, 043510 (2001)

    Google Scholar 

  22. M. Gasperini, F. Piazza, G. Veneziano, Phys. Rev. D 65, 023508 (2001)

    Google Scholar 

  23. L. Amendola, M. Gasperini, F. Piazza, JCAP 09, 014 (2004); Phys. Rev. D 4, 127302 (2006)

    Google Scholar 

  24. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. B. Zumino, Nucl. Phys. B 89, 535 (1975)

    Google Scholar 

  26. E. Witten, in Sources and Detection of Dark Matter and Dark Energy in the Universe, ed. by D.B. Cline (Springer, Berlin, 2001), p. 27

    Chapter  Google Scholar 

  27. R. Bousso, Gen. Rel. Grav. 40, 607 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. T. Padmanabhan, Gen. Rel. Grav. 40, 529 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. A. Kobakhidze, N.L. Rodd, Int. J. Theor. Phys. 52, 2636 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  30. M. Gasperini, JHEP 06, 009 (2008)

    Article  ADS  Google Scholar 

  31. I. Antoniadis, E. Dudas, A. Sagnotti, Phys. Lett. B 464, 38 (1999)

    Google Scholar 

  32. G.F.R. Ellis, Spacetime and the Passage of Time, arXiv:1208.2611, published in “Springer Hanbook of Spacetime”, ed. by A. Ashtekar, V. Petkov (Springer, Berlin, 2014)

    Google Scholar 

  33. P.C.W. Davies, Sci. Am. (Special Edition) 21, 8 (2012)

    Google Scholar 

  34. J.B. Barbour, The End of Time: The Next Revolution in Physics (Oxford University Press, Oxford, 1999)

    Google Scholar 

  35. J.D. Barrow, D.J. Shaw, Phys. Rev. Lett. 106, 101302 (2011)

    Article  ADS  Google Scholar 

  36. N. Kaloper, K.A. Olive, Phys. Rev. D 57, 811 (1998)

    Google Scholar 

  37. E. Caianiello, La Rivista del Nuovo Cimento 15, 1 (1992)

    Article  Google Scholar 

  38. M. Gasperini, Int. J. Mod. Phys. D 13, 2267 (2004)

    Google Scholar 

  39. B. Zwiebach, A First Course in String Theory (Cambridge University Press, Cambridge, 2009)

    Book  MATH  Google Scholar 

  40. M.B. Green, J. Schwartz, E. Witten, Superstring Theory (Cambridge University Press, Cambridge, 1987)

    MATH  Google Scholar 

  41. J. Polchinski, String Theory (Cambridge University Press, Cambridge, 1998)

    Book  Google Scholar 

  42. M. Gasperini, Elements of String Cosmology (Cambridge University Press, Cambridge, 2007)

    Book  MATH  Google Scholar 

  43. M.A. Virasoro, Phys. Rev. D 1, 2933 (1970)

    Google Scholar 

  44. P. Ramond, Phys. Rev. D 3, 2415 (1971)

    Google Scholar 

  45. A. Neveau, J.H. Schwarz, Nucl. Phys. B 31, 86 (1971)

    Google Scholar 

  46. F. Gliozzi, J. Scherk, A. Olive, Nucl. Phys. B 122, 253 (1977)

    Google Scholar 

  47. A. Sagnotti, J. Phys. A 46, 214006 (2013)

    Google Scholar 

  48. K. Kikkawa, M.Y. Yamasaki, Phys. Lett. B 149, 357 (1984)

    Google Scholar 

  49. N. Sakai, I. Senda, Prog. Theor. Phys. 75, 692 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  50. A.A. Tseytlin, Mod. Phys. Lett. A 6, 1721 (1991)

    Google Scholar 

  51. G. Veneziano, Phys. Lett. B 265, 287 (1991)

    Google Scholar 

  52. E. Witten, Nucl. Phys. B 443, 85 (1995)

    Google Scholar 

  53. R. Bousso, J. Polchinski, Sci. Am. 291, 60 (2004)

    Article  Google Scholar 

  54. R. Brandenberger, C. Vafa, Nucl. Phys. B 316, 391 (1989)

    Google Scholar 

  55. A.A. Tseytlin, C. Vafa, Nucl. Phys. B 372, 443 (1992)

    Google Scholar 

  56. S. Alexander, R. Brandenberger, D. Easson, Phys. Rev. D 62, 103509 (2000)

    Google Scholar 

  57. S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972)

    Google Scholar 

  58. A.A. Penzias, R.W. Wilson, Astrophys. J. 142, 419 (1965)

    Article  ADS  Google Scholar 

  59. J. Smooth et al., Astrophys. J. 396, L1 (1992)

    Article  ADS  Google Scholar 

  60. A. Guth, Phys. Rev. D 23, 347 (1981)

    Google Scholar 

  61. E.W. Kolb, M.S. Turner, The Early Universe (Addison Wesley, Redwood City, 1990)

    MATH  Google Scholar 

  62. A. Borde, A. Guth, A. Vilenkin, Phys. Rev. Lett. 90, 151301 (2003)

    Article  ADS  Google Scholar 

  63. M. Gasperini, G. Veneziano, Astropart. Phys. 1, 317 (1993); Phys. Rep. 373, 1 (2003)

    Google Scholar 

  64. M. Gasperini, The Universe Before the Big Bang: Cosmology and String Theory (Springer, Berlin, 2008)

    Google Scholar 

  65. J. Khoury, B.A. Ovrut, P.J. Steinhardt, N. Turok, Phys. Rev. D 64, 123522 (2001)

    Google Scholar 

  66. P.J. Steinhardt, N. Turok, Phys. Rev. D 65, 126003 (2002)

    Google Scholar 

  67. N. Goheer, M. Kleban, L. Susskind, JHEP 0307, 056 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  68. C. Burgess et al., JHEP 0107, 047 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  69. S. Kachru et al., JCAP 0310, 013 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  70. R. Penrose, Cycles of Time: An Extraordinary New View of the Universe (Bodley Head, London, 2010)

    Google Scholar 

  71. V.G. Gurzadyan, R. Penrose, Eur. Phys. J. Plus 128, 22 (2013)

    Article  Google Scholar 

  72. M. Gasperini, M. Giovannini, Phys. Lett. B 282, 36 (1992); Phys. Rev. D 47, 1519 (1993)

    Google Scholar 

  73. R. Brustein, M. Gasperini, G. Venenziano, Phys. Lett. B 361, 45 (1995)

    Google Scholar 

  74. M. Maggiore, Gravitational Waves (Oxford University Press, Oxford, 2007)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gasperini, M. (2014). Space, Time, and Space–Time. In: Gravity, Strings and Particles. Springer, Cham. https://doi.org/10.1007/978-3-319-00599-7_4

Download citation

Publish with us

Policies and ethics