Skip to main content

Gravity at Small Distances

  • Chapter
  • First Online:
Gravity, Strings and Particles
  • 1535 Accesses

Abstract

Among all fundamental forces of Nature, gravity is probably the one we think we know better—if only because it is the one which has always influenced our experience and our way of life, since the beginning of the human history.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 37.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For those who are expert of physics it will be clear that I am referring to the quantum “loop” corrections, described by a series of Feynman graphs of increasing accuracy and complexity.

  2. 2.

    The interested reader can find a description of such experiments in the review paper by Adelberger et al. [4].

  3. 3.

    It was a paper by Fischbach et al. [5].

  4. 4.

    At least, to the best of our present knowledge.

  5. 5.

    See for instance the paper by Barbieri and Cecotti [6].

  6. 6.

    In the case of the Bose–Einstein statistics there is no limit to the number of particles that can occupy the same quantum state. In the case of the Fermi–Dirac statistic, on the contrary, two or more particles cannot occupy the same quantum state (according to the so-called Pauli exclusion principle).

  7. 7.

    The search of supersymmetric particles is one of the main goals of the experiments performed using the powerful accelerator LHC at the CERN laboratories in Geneva. At the time of writing (March 2013), however, no positive result has yet been reported.

  8. 8.

    The existence of these particles was theoretically predicted by S. Glashow, S. Weinberg, and A. Salam. The final experimental confirmation is due to C. Rubbia and S. van de Meer. All these physicists have been subsequently awarded the Nobel Prize in Physics.

  9. 9.

    More precisely, the graviphoton is coupled to the so-called hypercharge, defined by adding to the baryonic charge other elementary charges characterizing the different species of quarks (which are the elementary components of protons and neutrons). Such additional charges, however, are vanishing for the typical atomic nuclei of ordinary matter.

  10. 10.

    For a consistent supersymmetric model, in fact, all particles belonging to the same multiplet should be characterized by the same mass. Hence, in the exact supersymmetric regime, the mass of the graviphoton should be the same as the graviton mass (which is zero). When supersymmetry is broken, on the contrary, a mass difference is generated even among the particles of the same multiplet.

  11. 11.

    See for instance an old paper I wrote in 1989 [7].

  12. 12.

    I have discussed this possibility in a paper written in 2001 [8].

  13. 13.

    A scalar particle is represented by a mathematical function that has only one component, which is left invariant under a general change of coordinates. A vector particle, instead, is represented by a function with many components, transforming as the components of a vector under a coordinate transformation.

  14. 14.

    See in particular a paper by Taylor and Veneziano [9].

  15. 15.

    If the dilaton mass is larger than this limit then the dilaton lifetime becomes smaller than present age of the Universe. All the dilatons copiously produced immediately after the Big Bang thus decay (into photons) before reaching the present epoch, and there is today no relic dilaton background waiting for a possible detection.

  16. 16.

    The possible existence of a cosmic background of relic dilatons was first suggested and studied by Gasperini and Veneziano (see, e.g., [10]).

  17. 17.

    See for instance the paper by Khoury and Weltman [11].

  18. 18.

    See the paper by Sundrum [12].

  19. 19.

    Usually the infinities appearing in the quantum regime can be eliminated by applying the so-called “renormalization” procedure. In the case of general relativity such a procedure does not work.

  20. 20.

    In fact, as already mentioned in Chap. 1, the Heisenberg principle tells us that, in a quantum context, the energy exchanges are inversely proportional to the involved distances.

  21. 21.

    The search for new additional spatial dimensions is one of the main goals of the big accelerator LHC at the CERN laboratories, near Geneva. At the time of writing (March 2013) no positive result has yet been reported. A final absence of signals would imply that the additional dimensions, if present, may become visible only at energies higher than the maximum values accessible to LHC (i.e., about 14 TeV).

  22. 22.

    The gauge symmetry is a property ensuring that the electric and magnetic fields remain unchanged under suitable transformations of the electromagnetic potential.

  23. 23.

    Two (or more) symmetry transformations are called Abelian if they give the same result regardless of the order in which they are performed. Otherwise they are called “non-Abelian.”

  24. 24.

    See for instance the paper by Arkani Hamed et al. [14], and the paper by Antoniadis [15].

  25. 25.

    Presented in a famous paper by Randall and Sundrum [16].

  26. 26.

    In the case of the Kaluza–Klein models, instead, the mass spectrum is discrete (see Sect. 2.3.1).

References

  1. R. Durrer, The Cosmic Microwave Background (Cambridge University Press, Cambridge, 2008)

    Book  Google Scholar 

  2. S. Weinberg, Cosmology (Oxford University Press, Oxford, 2008)

    MATH  Google Scholar 

  3. M. Gasperini, Lezioni di Cosmologia Teorica (Spriger, Milano, 2012)

    Book  MATH  Google Scholar 

  4. E.G. Adelberger, B.R. Heckel, A.E. Nelson, Ann. Rev. Nucl. Part. Sci. 53, 77 (2003)

    Article  ADS  Google Scholar 

  5. E. Fischbach, D. Sudarsky, A. Szafer, C. Talmadge, S.H. Aronson, Phys. Rev. Lett. 56, 3 (1986)

    Article  ADS  Google Scholar 

  6. R. Barbieri, S. Cecotti, Z. Phys. C 33, 255 (1986)

    Google Scholar 

  7. M. Gasperini, Phys. Rev. D 40, 325 (1989)

    Google Scholar 

  8. M. Gasperini, Phys. Rev. D 63, 047301 (2001)

    Google Scholar 

  9. T. Taylor, G. Veneziano, Phys. Lett. B 213, 459 (1988)

    Google Scholar 

  10. M. Gasperini, Phys. Lett. B 327, 314 (1994); M. Gasperini, G. Veneziano, Phys. Rev. D 50, 2519 (1994)

    Google Scholar 

  11. J. Khoury, A. Weltman, Phys. Rev. D 69, 044026 (2004)

    Google Scholar 

  12. R. Sundrum, Phys. Rev. D 69, 044014 (2004)

    Google Scholar 

  13. T. Kaluza, Sitzungsber. Preuss. Akad. Wiss. Berlin 1921, 966 (1921); O. Klein, Z. Phys. 37, 895 (1926)

    Google Scholar 

  14. N. Arkani Hamed, S. Dimopoulos, G.R. Dvali, Phys. Lett. B 429, 263 (1998)

    Google Scholar 

  15. I. Antoniadis, Phys. Lett. B 246, 377 (1990)

    Google Scholar 

  16. L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 4960 (1999)

    Google Scholar 

  17. A.G. Riess et al., Astron. J. 116, 1009 (1998); S. Perlmutter et al., Astrophys. J 517, 565 (1999)

    Google Scholar 

  18. G. Dvali, G. Gabadadze, M. Porrati, Phys. Lett. B 485, 208 (2000)

    Google Scholar 

  19. I. Slatev, L. Wang, P.J. Steinhardt, Phys. Rev. Lett. 82, 869 (1999)

    Google Scholar 

  20. C. Armendariz-Picon, V. Mukhanov, P.J. Steinhardt, Phys. Rev. Lett. 85, 4438 (2000)

    Article  ADS  Google Scholar 

  21. M. Gasperini, Phys. Rev. D 64, 043510 (2001)

    Google Scholar 

  22. M. Gasperini, F. Piazza, G. Veneziano, Phys. Rev. D 65, 023508 (2001)

    Google Scholar 

  23. L. Amendola, M. Gasperini, F. Piazza, JCAP 09, 014 (2004); Phys. Rev. D 4, 127302 (2006)

    Google Scholar 

  24. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. B. Zumino, Nucl. Phys. B 89, 535 (1975)

    Google Scholar 

  26. E. Witten, in Sources and Detection of Dark Matter and Dark Energy in the Universe, ed. by D.B. Cline (Springer, Berlin, 2001), p. 27

    Chapter  Google Scholar 

  27. R. Bousso, Gen. Rel. Grav. 40, 607 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. T. Padmanabhan, Gen. Rel. Grav. 40, 529 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. A. Kobakhidze, N.L. Rodd, Int. J. Theor. Phys. 52, 2636 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  30. M. Gasperini, JHEP 06, 009 (2008)

    Article  ADS  Google Scholar 

  31. I. Antoniadis, E. Dudas, A. Sagnotti, Phys. Lett. B 464, 38 (1999)

    Google Scholar 

  32. G.F.R. Ellis, Spacetime and the Passage of Time, arXiv:1208.2611, published in “Springer Hanbook of Spacetime”, ed. by A. Ashtekar, V. Petkov (Springer, Berlin, 2014)

    Google Scholar 

  33. P.C.W. Davies, Sci. Am. (Special Edition) 21, 8 (2012)

    Google Scholar 

  34. J.B. Barbour, The End of Time: The Next Revolution in Physics (Oxford University Press, Oxford, 1999)

    Google Scholar 

  35. J.D. Barrow, D.J. Shaw, Phys. Rev. Lett. 106, 101302 (2011)

    Article  ADS  Google Scholar 

  36. N. Kaloper, K.A. Olive, Phys. Rev. D 57, 811 (1998)

    Google Scholar 

  37. E. Caianiello, La Rivista del Nuovo Cimento 15, 1 (1992)

    Article  Google Scholar 

  38. M. Gasperini, Int. J. Mod. Phys. D 13, 2267 (2004)

    Google Scholar 

  39. B. Zwiebach, A First Course in String Theory (Cambridge University Press, Cambridge, 2009)

    Book  MATH  Google Scholar 

  40. M.B. Green, J. Schwartz, E. Witten, Superstring Theory (Cambridge University Press, Cambridge, 1987)

    MATH  Google Scholar 

  41. J. Polchinski, String Theory (Cambridge University Press, Cambridge, 1998)

    Book  Google Scholar 

  42. M. Gasperini, Elements of String Cosmology (Cambridge University Press, Cambridge, 2007)

    Book  MATH  Google Scholar 

  43. M.A. Virasoro, Phys. Rev. D 1, 2933 (1970)

    Google Scholar 

  44. P. Ramond, Phys. Rev. D 3, 2415 (1971)

    Google Scholar 

  45. A. Neveau, J.H. Schwarz, Nucl. Phys. B 31, 86 (1971)

    Google Scholar 

  46. F. Gliozzi, J. Scherk, A. Olive, Nucl. Phys. B 122, 253 (1977)

    Google Scholar 

  47. A. Sagnotti, J. Phys. A 46, 214006 (2013)

    Google Scholar 

  48. K. Kikkawa, M.Y. Yamasaki, Phys. Lett. B 149, 357 (1984)

    Google Scholar 

  49. N. Sakai, I. Senda, Prog. Theor. Phys. 75, 692 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  50. A.A. Tseytlin, Mod. Phys. Lett. A 6, 1721 (1991)

    Google Scholar 

  51. G. Veneziano, Phys. Lett. B 265, 287 (1991)

    Google Scholar 

  52. E. Witten, Nucl. Phys. B 443, 85 (1995)

    Google Scholar 

  53. R. Bousso, J. Polchinski, Sci. Am. 291, 60 (2004)

    Article  Google Scholar 

  54. R. Brandenberger, C. Vafa, Nucl. Phys. B 316, 391 (1989)

    Google Scholar 

  55. A.A. Tseytlin, C. Vafa, Nucl. Phys. B 372, 443 (1992)

    Google Scholar 

  56. S. Alexander, R. Brandenberger, D. Easson, Phys. Rev. D 62, 103509 (2000)

    Google Scholar 

  57. S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972)

    Google Scholar 

  58. A.A. Penzias, R.W. Wilson, Astrophys. J. 142, 419 (1965)

    Article  ADS  Google Scholar 

  59. J. Smooth et al., Astrophys. J. 396, L1 (1992)

    Article  ADS  Google Scholar 

  60. A. Guth, Phys. Rev. D 23, 347 (1981)

    Google Scholar 

  61. E.W. Kolb, M.S. Turner, The Early Universe (Addison Wesley, Redwood City, 1990)

    MATH  Google Scholar 

  62. A. Borde, A. Guth, A. Vilenkin, Phys. Rev. Lett. 90, 151301 (2003)

    Article  ADS  Google Scholar 

  63. M. Gasperini, G. Veneziano, Astropart. Phys. 1, 317 (1993); Phys. Rep. 373, 1 (2003)

    Google Scholar 

  64. M. Gasperini, The Universe Before the Big Bang: Cosmology and String Theory (Springer, Berlin, 2008)

    Google Scholar 

  65. J. Khoury, B.A. Ovrut, P.J. Steinhardt, N. Turok, Phys. Rev. D 64, 123522 (2001)

    Google Scholar 

  66. P.J. Steinhardt, N. Turok, Phys. Rev. D 65, 126003 (2002)

    Google Scholar 

  67. N. Goheer, M. Kleban, L. Susskind, JHEP 0307, 056 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  68. C. Burgess et al., JHEP 0107, 047 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  69. S. Kachru et al., JCAP 0310, 013 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  70. R. Penrose, Cycles of Time: An Extraordinary New View of the Universe (Bodley Head, London, 2010)

    Google Scholar 

  71. V.G. Gurzadyan, R. Penrose, Eur. Phys. J. Plus 128, 22 (2013)

    Article  Google Scholar 

  72. M. Gasperini, M. Giovannini, Phys. Lett. B 282, 36 (1992); Phys. Rev. D 47, 1519 (1993)

    Google Scholar 

  73. R. Brustein, M. Gasperini, G. Venenziano, Phys. Lett. B 361, 45 (1995)

    Google Scholar 

  74. M. Maggiore, Gravitational Waves (Oxford University Press, Oxford, 2007)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gasperini, M. (2014). Gravity at Small Distances. In: Gravity, Strings and Particles. Springer, Cham. https://doi.org/10.1007/978-3-319-00599-7_2

Download citation

Publish with us

Policies and ethics