Skip to main content

The Cascode and Differential Amplifier Stages

  • Chapter
  • First Online:

Part of the book series: Analog Circuits and Signal Processing ((ACSP,volume 118))

Abstract

Single active devices often have a rather poor behavior regarding accuracy of their transfers, high-frequency behavior, linearity, etc. To improve the accuracy of the transfers, special combinations of active devices have been developed. These combinations often consist of two active devices connected in such a way that the total behavior of the combination is that of one active device with improved behavior.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In deep sub-micron technology (cmos \(\le \) 90 nm), the low value of \(r_{o2}\) lowers \(Y_{inCF}\). The designer should therefore check for proper cascode behavior.

  2. 2.

    When the same devices are used for the ce and cb stages, and the biasing of the devices is the same, this reduces to \(C_{\mu 1{\textsc {ce}}}=2C_{\mu {\textsc {ce}}}\).

  3. 3.

    \(C_{gd1{\textsc {cs}}}=2C_{gd{\textsc {cs}}}\) in case of equal fets and equal biasing.

  4. 4.

    In case of the fetdifferential stage, \(Q_1\) and \(Q_2\) should be replaced by \(M_1\) and \(M_2\), respectively.

  5. 5.

    In this work, feedback in amplifiers is usually denoted by \(\beta \). To prevent confusion with \(\beta \), feedback action is denoted by \(\kappa \) in the superposition model of the differential stage.

  6. 6.

    Under the assumption that the nonlinearity of the fetoutput conductance is negligible, e.g., due to cascoding.

  7. 7.

    When there is finite isolation between the input and output of the differential stage Fig. 4.6 has to be used. However, when the effect of \(C_\mu \) is negligible, e.g., at relatively low frequencies, this model and the following equations apply.

  8. 8.

    version of 2007 (which is equal to the version of 2012).

  9. 9.

    Deriving (4.22) results in \(r_{\pi 2}\frac{g_{m2}}{g_{m1}}\left( 1+\frac{R_{l1}}{r_{o1}}\right) = \frac{\beta _{ac2}}{g_{m1}}\left( 1+\frac{R_{l1}}{r_{o1}}\right) =r_{\pi 1a}\left( 1+\frac{R_{l1}}{r_{o1}}\right) \) for the numerator.

  10. 10.

    The low-frequency inaccuracy of the linear transfer is 1.5 \(\%\) and the maximal inaccuracy found in the emi calculation is 2.8 \(\%\), in this example.

References

  • M.T. Abuelma’atti, Prediction of the transient intermodulation performance of operational amplifiers. Int. J. Electron. 55(4), 591–602 (1983)

    Article  Google Scholar 

  • M.H. Abuelma’atti, Analysis of the effect of radio frequency interference on the DC performance of CMOS operational amplifiers. Analog Integr. Circ. Sig. Process. 45, 123–130 (2005)

    Article  Google Scholar 

  • J. Bastos, M. Steyaert, A. Pergoot, W. Sansen, Mismatch characterization of submicron mos transistors. Analog Integr. Circ. Sig. Process. 12, 95–106 (1997)

    Article  Google Scholar 

  • E. K. de Lange, O. De Feo, A. van Staveren, Modelling differential pairs for low-distortion amplifier design, in Proceedings ISCAS2003, 2003, pp. 261–264

    Google Scholar 

  • F. Fiori, P.S. Crovetti, Nonlinear effects of radio-frequency interference in operational amplifiers. IEEE Trans. Circuits Syst. I(49), 367–372 (2002)

    Article  Google Scholar 

  • F. Fiori, Design of a operational amplifier input stage immune to EMI. IEEE Trans. EMC 49(4), 834–839 (2007)

    Article  Google Scholar 

  • K. L. Fong, R. G. Meyer, High-frequency nonlinearity analysis of common-emitter and differential-pair transconductance stages. IEEE J. Solid-State Circuits, 548–554 (1998)

    Google Scholar 

  • J. J. Goedbloed, Elektromagnetische compatibiliteit, 3rd edn. (Kluwer technische boeken, 1993). Also available in English as ’Electromagnetic Compatibility’, Prentice Hall

    Google Scholar 

  • P. R. Gray, P. J. Hurst, S. H. Lewis, R. G. Meyer, Analysis and Design of Analog Integrated Circuits, 4th edn. (Wiley, Inc., 2001)

    Google Scholar 

  • M.J. van der Horst, A.C. Linnenbank, A. van Staveren, Amplitude-modulation detection in single-stage negative-feedback amplifiers due to interfering out-of-band signals. IEEE Trans. Electromagn. Compat. EMC–47, 34–44 (2005)

    Google Scholar 

  • M. L. Lantz, S. Mattisson, Nonlinearity of multistage feedback amplifiers, in The 10th Workshop on Nonlinear Dynamics of Electronic Systems, 2002

    Google Scholar 

  • S.J. Lovett, M. Welten, A. Mathewson, B. Mason, Optimizing mos transistor mismatch. IEEE J. Solid State Circuits 33(1), 147–150 (1998)

    Article  Google Scholar 

  • G. C. M. Meijer, Elektronische Implementatiekunde, 1st edn. (Delftse Universitaire Pers, 1996)

    Google Scholar 

  • E. H. Nordholt, Design of High-Performance Negative Feedback Amplifiers (Delftse Uitgevers Maatschappij, 1993)

    Google Scholar 

  • NXP Semiconductors, BC847/ BC547 series product data sheet. datasheet://www.nxp.com/documents/datasheet/BC847-BC547-SER.pdf, SPICE model://www.nxp.com/models/spicepar/sst/BC847C.html, 2008

    Google Scholar 

  • K. Papathanasiou, A designer’s approach to device mismatch: theory, modeling, simulation techniques, scripting, applications and examples. Analog Integr. Circ. Sig. Process. 48(95), 95–106 (2006)

    Article  Google Scholar 

  • A.C. Pluygers, A novel microphone preamplifier for use in hearing aids. Analog Integr. Circ. Sig. Process. 3, 113–118 (1993)

    Article  Google Scholar 

  • A. S. Poulton, Effect of conducted emi on the dc performance of operational amplifiers. Electron. Lett. 282–284 (1994)

    Google Scholar 

  • J.M. Redouté, M. Steyaert, EMI resistant CMOS differential input stages. IEEE Trans. Circuits Syst. I(57), 323–331 (2010)

    Article  Google Scholar 

  • A. Richelli, L. Colalongo, M. Quarantelli, Z. Kovacs-vajna, Design of an integrated cmos operational amplifier with low probability emi induced failures, in Proceedings of esscirc2001, 2001, pp. 376–379

    Google Scholar 

  • W. A. Serdijn, The design of Low-Voltage Low-Power Analog Integrated Circuits and their applications in Hearing Instruments. PhD thesis, Delft University of Technology, 1994

    Google Scholar 

  • A. van Staveren, C. J. M. Verhoeven, Order determination for frequency compensation of negative-feedback systems, in Proceedings of the Design, Automation, and Test in Europe Conference, Munich, 2001, p. 815

    Google Scholar 

  • C. J. M. Verhoeven, A. van Staveren, Systematic biasing of negative-feedback amplifiers, in Proceedings of the Design, Automation and Test in Europe Conference, Munich, 1999, pp. 318–322

    Google Scholar 

  • C. J. M. Verhoeven, A. van Staveren, G. L. E. Monna, M. H. L. Kouwenhoven, E. Yildiz, Structured Electronic Design, Negative-Feedback Amplifiers, 1st edn. (Kluwer Academic Publishers, 2003)

    Google Scholar 

  • A.C. van der Woerd, A.C. Pluygers, Biasing a differential pair in low-voltage analog circuits: a systematic approach. Analog Integr. Circ. Sig. Process. 3, 119–125 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel J. van der Horst .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

van der Horst, M.J., Serdijn, W.A., Linnenbank, A.C. (2014). The Cascode and Differential Amplifier Stages. In: EMI-Resilient Amplifier Circuits. Analog Circuits and Signal Processing, vol 118. Springer, Cham. https://doi.org/10.1007/978-3-319-00593-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00593-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-00592-8

  • Online ISBN: 978-3-319-00593-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics