Skip to main content

Modelling of Active Devices

  • Chapter
  • First Online:
EMI-Resilient Amplifier Circuits

Part of the book series: Analog Circuits and Signal Processing ((ACSP,volume 118))

  • 1303 Accesses

Abstract

Active devices are the building blocks of (negative-feedback) amplifiers. There are three types of relevant active semiconductor devices: the bipolar junction transistor (bjt), the metal-oxide-semiconductor field-effect transistor (mosfet) and the field-effect transistor operating with a reverse biased gate-source junction. Both the junction field-effect transistor (JFET) and the metal-semiconductor field effect transistor (MESFET) belong to the latter type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Modern simulators like SPICE also use an extra capacitor to model the distributed collector-base capacitance (Hoefer and Nielinger 1985)

  2. 2.

    The effects of bias dependent \(U_{AF}\) can be analyzed by performing simulations using the MEXTRAM model (van der Toorn et al. 2008).

  3. 3.

    For increased accuracy in second-harmonic distortion analysis.

  4. 4.

    It is represented by \(I_K\) in the MEXTRAM model (van der Toorn et al. 2008). It should be noted that high-current effects are modelled more accurately in this model.

  5. 5.

    In case of some older bjt s \(b\) and \(c\) should be adjusted for a deviation of 3% \(\ldots \) 4%.

  6. 6.

    Note that \(\beta _{ac}\) may easily be determined by simulation.

  7. 7.

    The disagreement is not observed in FEThybrid-\(\pi \) models (van den Brink 1994).

  8. 8.

    Silicon dioxide is an insulator. The insulating layer separates the gate from the substrate. Therefore, these devices are also called insulated-gate FETs or IGFETs (Chirlian 1987).

  9. 9.

    Hence the name mosfet.

  10. 10.

    The error made in case of long-channel mosfets is less than 1 % (van Langevelde 1998)

  11. 11.

    \( U_{ds{sat}}\approx U_{ds{sat\infty }}= U_{gs}-U_{FB}+\frac{\gamma ^2}{2} -\gamma \sqrt{U_{gs}+U_{sb}-U_{FB}+\frac{\gamma ^2}{4}}-\varPhi _B\) when source and bulk are not short circuited.

  12. 12.

    The channel-length of short-channel mosfets is typically in the submicrometer range (Ytterdal et al. 2003). Section 3.4.2 presents an equation that can be used to determine whether a mosfet has a long or short-channel.

  13. 13.

    Again, a too low \(r_{ds}\) can be solved by cascoding the FET.

  14. 14.

    mosfetmodel 11 uses \(\alpha = 0.025\) and \(U_p= 50\,{\text {mV}}\) as default/typical values.

  15. 15.

    When \(U_{ds}-U_{dssat} = 5U_P\) the difference between (3.62) and (3.63) is less than 0.5 %.

  16. 16.

    This is consistent with the findings of van Langevelde (1998) and van Langevelde et al. (2003). In these publications is also shown that third harmonic distortion is maximal too when \(U_{dsQ}=U_{dssat}\).

  17. 17.

    Dispersion is thought to be related to the, e.g., trapping of carriers at the channel-substrate interface. Dispersion takes place at low frequencies. In the example given in Barclay (1996) at about 10 kHz.

References

  • D.M. Barclay, A design study for gallium arsenide operational Transconductance Amplifiers. PhD thesis, University of York, 1996.

    Google Scholar 

  • M.T. Bohr, R.S. Chau, T. Ghani, K (Mistry, The high-k solution, IEEE Spectrum , 2007), pp. 29–35

    Google Scholar 

  • P.M. Chirlian, Analysis and design of integrated electronic circuits, 2nd edn. (Wiley, London, 1987)

    Google Scholar 

  • E.K. de Lange, A. van Staveren, O. De Feo, F.L. Neerhoff, M. Hasler, J.R. Long, Predicting nonlinear distortion in common-emitter stages for amplifier design using Volterra series, in Proceedings of NDES2002, pp. 41–44, 2002.

    Google Scholar 

  • I.E. Getreu, Modelling the bipolar transistor, 1st edn. (Elsevier Scientific Publishing Company, New York, 1978)

    Google Scholar 

  • P.R. Gray, P.J. Hurst, S.H. Lewis, R.G. Meyer, Analysis and design of analog integrated circuits, 4th edn. (Wiley, London, 2001)

    Google Scholar 

  • J.J. Goedbloed, Elektromagnetische compatibiliteit. Kluwer technische boeken, 3rd edn. 1993. Also available in English as ’Electromagnetic Compatibility’, Prentice Hall.

    Google Scholar 

  • E.E.E. Hoefer, H. Nielinger, Spice. Nijgh en Van Ditmar, 2nd edn, 1985.

    Google Scholar 

  • C.D. Hartgring, An accurate JFET/MESFET model for circuit analysis. Solid State Electron. 25(3), 233–240 (1982)

    Article  Google Scholar 

  • D.A. Johns, K. Martin, Analog integrated circuit design, 1st edn. (Wiley, London, 1997)

    Google Scholar 

  • H. Kuntman, Improved representation of channel-length modulation in junction field-effect transistors. Int. J. Electronics 75(1), 57–64 (1993)

    Article  Google Scholar 

  • M. Lantz, Systematic design of linear feedback amplifiers. PhD thesis, Lund University, 2002.

    Google Scholar 

  • X. Li, G. Gildenblat, G.D.J. Smit, A.J. Scholten, D.B.M. Klaassen, R. van Langevelde, psp 103.1, Technical report, Arizona State University and NXP Semiconductor Research, 2009.

    Google Scholar 

  • S.I. Long and W.K. Chen (editor-in chief), The circuits and filters handbook, chapter 56.3, JFET technology. CRC Press LLC, 2nd edn. 2003.

    Google Scholar 

  • S.P. Murray, K.P. Roenker, An analytical model for SiC MESFETs. Solid State Electron. 46(2), 1495–1505 (2002)

    Article  Google Scholar 

  • A.E. Parker, D.J. Skellern, A realistic large-signal mesfet model for spice. IEEE Trans. Microwave Theory Tech. 45, 1563–1571 (1997)

    Article  Google Scholar 

  • G.P. Reitsma, Design of electromagnetically compatible electronics. Ph.D. thesis, Delft University of Technology, 2005.

    Google Scholar 

  • W.J. Rugh, Nonlinear system theory. The John Hopkins University Press, also freely available at: http://www.ece.jhu.edu/rugh/214/me/rugh.html, 1rst ed., 1981

  • M. Schroter, A. Mukherjee, Hicum, a geometry scalable physics-based compact bipolar transistor model (University of California San Diego, University of Technology Dresden, Technical report , 2008)

    Google Scholar 

  • R.D. Thornton, D. DeWitt, P.E. Gray, E.R. Chenette, Transistors karakteristieke eigenschappen. Uitgeverij Het Spectrum N.V., 1st edn. 1970.

    Google Scholar 

  • R.F.M. van den Brink, Low-noise wideband feedback amplifiers, an integrated approach to characterization and design using microwave and lightwave techniques. Ph.D. thesis, Delft University of Technology, 1994.

    Google Scholar 

  • R. van der Toorn, J.C.J. Paaschens, W.J. Kloosterman, The mextram bipolar transistor model (Delft University of Technology, Technical report , 2008)

    Google Scholar 

  • R. van Langevelde, A Compact MOSFET model for distortion analysis in analog circuit design. Ph.D. thesis, Eindhoven University of Technology, 1998.

    Google Scholar 

  • R. van Langevelde, F.M. Klaassen, Effect of gate-field dependent mobility degradation on distortion analysis in mosfets. IEEE Trans. Electron Devices 44, 2044–2052 (1997).

    Google Scholar 

  • R. van Langevelde, F.M. Klaassen, Accurate drain conductance modeling for distortion analysis in mosfets, in International Electron Devices Meeting, pp. 313–316, 1997.

    Google Scholar 

  • R. van Langevelde, A.J. Scholten, D.B.M. Klaassen, Physical background of MOS model 11 Nat. Lab. Unclassified Report 2003/00239, Technical report, Koninklijke Philips, Electronics N.V., 2003.

    Google Scholar 

  • R. van Langevelde, A.J. Scholten, R. Duffy, F.N. Cubaynes, M. Knitel, D.B.M. Klaassen, Gate current: Modeling, \(\Delta L\) extraction and impact on rf performance, in International Electron Devices Meeting, pp. 13.2.1.-13.2.4, 2001.

    Google Scholar 

  • R. van Langevelde, L. F. Tiemeijer, M. J. Knitel, R. F. M. Roes, P. H. Woerlee, and D. B. M. Klaassen, RF-distortion in deep-submicron CMOS technologies, in International Electron Devices Meeting, pp. 35.1.1-35.1.4, 2000.

    Google Scholar 

  • M. Vaidyanathan, M. Iwamoto, L.E. Larson, P.S. Gudem, P.M. Asbeck, A theory of high-frequency distortion in bipolar transistors. IEEE Trans Microwave Theory Techn. 51, 448–461 (2003)

    Article  Google Scholar 

  • D.D. Weiner, J.F. Spina, Sinusoidal analysis and modeling of weakly nonlinear circuits, with applications to nonlinear effects. Van Nostrand Reinhold, 1980.

    Google Scholar 

  • C. Wissenburgh, Inleiding in de Electronica. http://www.vssd.nl/hlf, free internet copy ed., 2002

  • P.H. Woerlee, M.J. Knitel, R. van Langevelde, D.B.M. Klaassen, L.F. Tiemeijer, A.J. Scholten, A.T.A. Zegers-van Duijnhoven, RF-CMOS performance trends. IEEE Trans. Electron Devices 48, 1776–1782 (2001)

    Article  Google Scholar 

  • W.W. Wong, J.J. Liou, Modelling the channel length modulation coefficient for junction field effect transistors. Int. J. Electronics 72(4), 533–540 (1992)

    Article  Google Scholar 

  • T. Ytterdal, Y. Cheng, T.A. Fjeldly, Device modeling for Analog and RF CMOS Circuit Design, 1st edn. (Wiley, London, 2003)

    Book  Google Scholar 

  • J.S. Yuan, J.J. Liou, An improved early voltage model for advanced bipolar transistors. IEEE Trans. Electron Devices 38, 179–182 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel J. van der Horst .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

van der Horst, M.J., Serdijn, W.A., Linnenbank, A.C. (2014). Modelling of Active Devices. In: EMI-Resilient Amplifier Circuits. Analog Circuits and Signal Processing, vol 118. Springer, Cham. https://doi.org/10.1007/978-3-319-00593-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00593-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-00592-8

  • Online ISBN: 978-3-319-00593-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics