Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 391 Accesses

Abstract

For the development of the pODMR studies outlined in Chaps. 3 and 4, it is important to fully understand the technical nature of the experiments performed. To this end, a detailed overview of several of the salient experimental issues is discussed in this section. First a walk-through of the technical setup is given, which outlines some of the more critical features of physically implementing these experiments. Also critical to any measurement is the knowledge of how a dynamic signal becomes digitized, which then determines how those data are later analyzed. A description of how the resonantly transient response in photoluminescence is captured and digitized is given, enabling a meaningful scaling of data that are acquired with the Bruker Elexsys E580. Calibration of this spectrometer’s input analog-to-digital converter (ADC) is also crucial for scaling data correctly, and is also discussed. Finally, since the ODMR observable is a resonant change in photoluminescence intensity, it is imperative that the researcher have complete knowledge of the emitting species which are supported by the material under investigation. To this end, the need for spectral selection of the desired emission band is demonstrated with an example given of the confusion which can result from incomplete knowledge of a material’s minority emission channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Bruker BioSpin Corp.; Billerica, MA, USA; X-band EPR spectrometer.

  2. 2.

    Bruker BioSpin Corp.; Billerica, MA, USA; ER 4118X-MD5 X-band resonator.

  3. 3.

    Bruker BioSpin Corp.; Billerica, MA, USA; ER 4118CF 4He cryostat.

  4. 4.

    Bruker BioSpin Corp.; Billerica, MA, USA; E4118130 FlexLine Sample Rod.

  5. 5.

    Thorlabs, Inc.; Newton, NJ, USA; excitation fiber:BFH22-550; collection fibers: BFL22-365.

  6. 6.

    Wilmad-LabGlass; Vineland, NJ, USA; part number: 707-SQ-250M.

  7. 7.

    Bruker BioSpin Corp.; Billerica, MA, USA; E4118140 Sample Holder Set.

  8. 8.

    Coherent, Inc.; Santa Clara, CA, USA; Innova 90-4 Laser System, supplied by Laser Innovations, Santa Paula, CA, USA.

  9. 9.

    Semrock, Inc.; Rochester, NY, USA; 459.9 nm MaxLine, part number:LL01-458-12.5.

  10. 10.

    Coherent, Inc.; Santa Clara, CA, USA; FieldMaxII with diode sensitivity range of 400–1,060 nm.

  11. 11.

    Thorlabs, Inc.; Newton, NJ, USA; part number: NDC-50C-2M.

  12. 12.

    Thorlabs, Inc.; Newton, NJ, USA; part number: F220SMA-A.

  13. 13.

    Semrock, Inc.; Rochester, NY, USA; 458 nm RazorEdge filter, part number:LP02-458RU-25.

  14. 14.

    FEMTO Messtechnik GmbH; Berlin, Germany; Si Photoreceiver, part number: LCA-S-400K-SI.

  15. 15.

    Stanford Research Systems, Inc.; Sunnyvale, CA, USA; SR560 Low Noise Preamplifier.

  16. 16.

    Applied Systems Engineering, Inc.; Fort Worth, TX, USA; Model 117 1kW X-band amplifier.

  17. 17.

    Andor Technology PLC; Belfast, Ireland; Imaging spectrometer with UV-Vis mirror and 150 l/mm (1.57 nm resolution) ruled grating.

  18. 18.

    Andor Technology PLC; Belfast, Ireland; with 18 mm generation 3 intensifier tube.

  19. 19.

    CryLas GmbH; Berlin, Germany; Diode pumped passively Q-switched solid state laser, model FTSS 355-50.

  20. 20.

    Sigma-Aldrich; USA; polystyrene, purity > 99. 99%.

  21. 21.

    M. Braun, Inc.; Stratham, NJ, USA; custom configuration.

  22. 22.

    Carolina Biological Supply; Burlington, NC, USA; 1 cm square, 0.2 mm thick.

  23. 23.

    R.G. Hansen&Associates; Santa Barbara, CA, USA; closed-cycle He cryostat model: DE-202.

References

  1. Davies, J.J.: Energy transfer effects in ODMR spectra: a possible source of misinterpretation. J. Phys. C 16(23), L867–L871 (1983)

    Article  ADS  Google Scholar 

  2. Davies, J.J.: ODMR studies of recombination emission in II-VI compounds. J. Cryst. Growth 72(1–2), 317–325 (1985)

    Article  ADS  Google Scholar 

  3. Chaudhuri, D., Wettach, H., van Schooten, K.J., Liu, S., Sigmund, E., Höger, S., Lupton, J.M.: Tuning the singlet-triplet gap in metal-free phosphorescent π-conjugated polymers. Angew. Chem. 49(42), 7714–7717 (2010)

    Article  Google Scholar 

  4. Lutich, A.A., Mauser, C., Da Como, E., Huang, J., Vaneski, A., Talapin, D.V., Rogach, A.L., Feldmann, J.: Multiexcitonic dual emission in CdSe/CdS tetrapods and nanorods. Nano Lett. 10(11), 4646–4650 (2010)

    Article  ADS  Google Scholar 

  5. Chestnoy, N., Harris, T.D., Hull, R., Brus, L.E.: Luminescence and photophysics of cadmium sulfide semiconductor clusters: the nature of the emitting electronic state. J. Phys. Chem. 90(15), 3393–3399 (1986)

    Article  Google Scholar 

  6. Liu, S.: Manipulation of exciton dynamics in macrycycle molecules and inorganic semiconductor nanocrystals. PhD thesis, University of Utah (2012)

    Google Scholar 

  7. Talapin, D.V., Lee, J.-S., Kovalenko, M.V., Shevchenko, E.V.: Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110(1), 389–458 (2010)

    Article  Google Scholar 

  8. Li, Y.-D., Liao, H.-W., Ding, Y., Qian, Y.-T., Yang, L., Zhou, G.-E.: Nonaqueous synthesis of CdS nanorod semiconductor. Chem. Mater. 10(9), 2301–2303 (1998)

    Article  Google Scholar 

  9. Talapin, D.V., Nelson, J.H., Shevchenko, E.V., Aloni, S., Sadtler, B., Alivisatos, A.P.: Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. Nano Lett. 7(10), 2951–2959 (2007)

    Article  ADS  Google Scholar 

  10. Pandey, A., Guyot-Sionnest, P.: Intraband spectroscopy and band offsets of colloidal II-VI core/shell structures. J. Chem. Phys. 127(10), 104710 (2007)

    Article  ADS  Google Scholar 

  11. Steiner, D., Dorfs, D., Banin, U., Della Sala, F., Manna, L., Millo, O.: Determination of band offsets in heterostructured colloidal nanorods using scanning tunneling spectroscopy. Nano Lett. 8(9), 2954–2958 (2008)

    Article  ADS  Google Scholar 

  12. Muller, J., Lupton, J.M., Lagoudakis, P.G., Schindler, F., Koeppe, R., Rogach, A.L., Feldmann, J., Talapin, D.V., Weller, H.: Wave function engineering in elongated semiconductor nanocrystals with heterogeneous carrier confinement. Nano Lett. 5(10), 2044–2049 (2005)

    Article  ADS  Google Scholar 

  13. Kraus, R.M., Lagoudakis, P.G., Rogach, A.L., Talapin, D.V., Weller, H., Lupton, J.M., Feldmann, J.: Room-temperature exciton storage in elongated semiconductor nanocrystals. Phys. Rev. Lett. 98(1), 017401 (2007)

    Article  ADS  Google Scholar 

  14. Mauser, C., Limmer, T., Da Como, E., Becker, K., Rogach, A.L., Feldmann, J., Talapin, D.V.: Anisotropic optical emission of single CdSe/CdS tetrapod heterostructures: evidence for a wavefunction symmetry breaking. Phys. Rev. B 77(15), 153303 (2008)

    Article  ADS  Google Scholar 

  15. Lupo, M.G., Della Sala, F., Carbone, L., Zavelani-Rossi, M., Fiore, A., Lüer, L., Polli, D., Cingolani, R., Manna, L., Lanzani, G.: Ultrafast electron-hole dynamics in core/shell CdSe/CdS dot/rod nanocrystals. Nano Lett. 8(12), 4582–4587 (2008)

    Article  ADS  Google Scholar 

  16. Herek, J.L., Wohlleben, W., Cogdell, R.J., Zeidler, D., Motzkus, M.: Quantum control of energy flow in light harvesting. Nature 417(6888), 533–535 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

van Schooten, K. (2013). Experimental Methods. In: Optically Active Charge Traps and Chemical Defects in Semiconducting Nanocrystals Probed by Pulsed Optically Detected Magnetic Resonance. Springer Theses. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00590-4_2

Download citation

Publish with us

Policies and ethics