Skip to main content

Phytochemicals for Pest Management: Current Advances and Future Opportunities

  • Chapter
  • First Online:
Book cover 50 Years of Phytochemistry Research

Abstract

As with pharmaceuticals, a significant proportion of commercial pesticides are natural molecules or are derived from natural compounds. This review describes some of the past commercial successes of phytochemicals as pesticides by pesticide class as well as current work and future prospects for development of pesticides from plant-derived natural compounds. For example, two compounds isolated by assay-guided fractionation of the essential oil of American beautyberry (Callicarpa americana L.) (Verbenaceae), callicarpenal and intermediol, were found to have very potent insect repellent properties. An analysis of the number of new phytochemicals being discovered yearly and the relatively few bioassays for potential pesticidal activity that most of the known phytochemicals have been subjected to, indicates that this area still has a bright future. Furthermore, chemical modification of these compounds and their use to discover new modes of action greatly expand the scope for future work. In addition, the use of transgene technology holds great promise, not only to protect crops from pests, by imparting production or manipulation of production of pest management phytochemicals, but also for crop/weed allelopathy, as success in this effort would greatly decrease the most used form of synthetic pesticides, herbicides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cantrell CL, Dayan FE, Duke SO (2012) Natural products as sources of new pesticides. J Nat Prod 75:1231–1243

    Article  PubMed  CAS  Google Scholar 

  2. Ayer SW, Isaac SK, Krupa DM, Crosby KE, Letendre LJ, Stonard RJ. (1989) Herbicidal compounds from microorganisms. Pestic Sci 27:221–223

    Google Scholar 

  3. ten Kate K, Laird SA (1999) The commercial use of biodiversity. Earthscan Publications, Ltd, London, pp 398

    Google Scholar 

  4. Dayan FD, Owens DK, Duke SO (2012) Rationale for a natural products approach to herbicide discovery. Pest Manag Sci 68:519–528

    Article  PubMed  CAS  Google Scholar 

  5. Nauen R (2006) Insecticide mode of action: return of the ryanodine receptor. Pest Manag Sci 62:690–692

    Article  PubMed  CAS  Google Scholar 

  6. Sattelle DB, Cordova D, Cheek TR (2008) Insect ryanodine receptors: molecular targets for novel pest control chemicals. Invert Neurosci 8:107–119

    Article  PubMed  CAS  Google Scholar 

  7. Zhou S, Yin J, Ma J (2011) Control effect of botanical pesticides against Ectropis oblique hmpulina and Empoasa pirisuga in tea plantation. Plant Dis Pests 2:68–71

    CAS  Google Scholar 

  8. Mordue AJ, Morgan ED, Nisbet AJ (2005) Azadirachtin, a natural product in insect control. Comp Mol Insect Sci 6:117–135

    CAS  Google Scholar 

  9. Isman MB (2000) Plant essential oils for pest and disease management. Crop Protection 19:603–608

    Article  CAS  Google Scholar 

  10. Cantrell CL, Klun JA, Bryson CT, Kobaisy M, Duke SO (2005) Isolation and identification of mosquito bite-deterrent terpenoids from leaves of American (Callicarpa americana) and Japanese (Callicarpa japonica) beautyberry. J Agric Food Chem 53:5948–5953

    Article  PubMed  CAS  Google Scholar 

  11. Krajick K (2006) Keeping the bugs at bay. Science 313:36–38

    Article  PubMed  CAS  Google Scholar 

  12. Carrol J, Cantrell CL, Klun J, Kramer M (2007) Repellency of two terpenoid compounds isolated from Callicarpa americana (Lamiaceae) against Ixodes scapularis and Amblyomma americanum ticks. Exp Appl Acarol 41:215–224

    Article  Google Scholar 

  13. Chen J, Cantrell CL, Duke SO, Allen ML (2008) Repellency of callicarpenal and intermediol against workers of imported fire ants (Hymenoptera: Formicidae). J Econ Entomol 101:265–271

    Article  PubMed  CAS  Google Scholar 

  14. Cantrell CL, Ali A, Duke SO, Khan I (2011) Identification of mosquito biting deterrent constituents from the Indian folk remedy plant Jatropha curcas. J Med Entomol 48:836–845

    Article  PubMed  CAS  Google Scholar 

  15. Jones AMP, Klun JA, Cantrell CL, Ragone D, Chauhan K, Murch SJ Isolation and identification of mosquito (Aedes aegypti) biting deterrent fatty acids from male inflorescences of breadfruit (Artocarpus altilis [Partkinson] Fosberg). J Agric Food Chem 60:3867–3873

    Google Scholar 

  16. Sampson BJ, Tabanca N, Kirimer N, Demirci B, Baser KHC, Khan IA, Spiers JM, Wedge DE (2005) Insecticidal activity of 23 essential oils and their major compounds against adult Lipaphis pseudobrassicae (Davis) (Aphididae: Homoptera). Pest Manag Sci 61:1122–1128

    Article  PubMed  CAS  Google Scholar 

  17. Wedge DE, Klun J, Tabanca N, Demirci B, Ozek T, Baser KHC, Liu Z, Zhang S, Cantrell CL, Zhang J (2009) Bioactivity-guided fractionation and GC-MS fingerprinting of Angelica sinensis and A. archangelica root components for antifungal and mosquito deterrent activity. J Agric Food Chem 57:464–470

    Article  PubMed  CAS  Google Scholar 

  18. Passreiter CM, Akhtar Y, Isman MB (2005) Insecticidal activity of the essential oil of Ligusticum mutellina roots. Z Naturforsch 60C:411–414

    Google Scholar 

  19. Carroll JF, Tabanca N, Kramer M, Elejalde NM, Wedge DE, Bernier UR, Coy M, Becnel JJ, Demirci B, Baser KHC, Zhang J, Zhang S (2011) Activity of Cupressus funebris, Juniperus communis, and J. chinensis (Cupressaceae) essential oils as repellents against ticks (Acari: Ixodidae) and as repellents and toxicants against mosquitoes (Diptera: Culicidae). J Vector Ecol 36:258–268

    Article  PubMed  Google Scholar 

  20. Wedge DE, Nagle DG (2005) Fungicidal properities of sampangine and its analogs to agriculturally important fungal plant pathogens. US Patent 6,844,353 B2, 18 Jan 2005

    Google Scholar 

  21. Li XC, Jacob MR, Wedge DE. Novel cyclopentenedione antifungal compounds and methods for their use. US Patent 7,109,380, 19 Sept 2006; USSN: 11/093,695

    Google Scholar 

  22. Baser KHC, Tabanca N, Kirimer N, Bedir E, Khan IA, Wedge DE (2007) Recent advances in the chemistry and biological activities of the Pimpinella species of Turkey. Pure Appl Chem 79:539–556

    Article  CAS  Google Scholar 

  23. Tabanca N, Bedir E, Ferreira D, Slade D, Wedge DE, Jacob MR, Khan SI, Kirimer N, Baser HKC, Khan IA (2005) Bioactive constituents from Turkish Pimpinella species. Chem Biodivers 2:221–232

    Article  PubMed  CAS  Google Scholar 

  24. Sobolev VS, Khan SI, Tabanca N, Wedge DE, Manly SP, Cutler SJ, Coy MR, Becnel JJ, Neff SA, Gloer JB (2011) Biological activity of peanut (Arachis hypogaea) phytoalexins and selected natural and synthetic stilbenoids. J Agric Food Chem 59:1673–1682

    Article  PubMed  CAS  Google Scholar 

  25. Wang X, Habib E, León F, Radwan MM, Tabanca N, Gao J, Wedge DE, Cutler SJ (2011) Antifungal metabolites from Diospyros virginiana by overpressure layer chromatography. Chem Biodivers 8:2331–2340

    Article  PubMed  CAS  Google Scholar 

  26. Lemma A, Brody G, Newell GW, Parkhurst RM, Skinner WA (1972) Laboratory evaluation of molluscicidal potency of a butanol extract of Phytolacca dodecandra (endod) berries. J Parasitol 58:104–107

    Article  PubMed  CAS  Google Scholar 

  27. Marston A, Hostettmann K (1985) Plant molluscicides. Phytochemistry 24:639–652

    Article  CAS  Google Scholar 

  28. Goll PH, Lemma A, Duncan J, Mazengia B (1983) Control of schistosomiasis in Adwa, Ethiopia, using the plant molluscicide endod (Phytolacca dodecandra). Tropenmedizin Parasitologie 34:177–183

    CAS  Google Scholar 

  29. Pasnik D (1999) Research of new trematode in channel catfish. Fish Farming News. Nov/Dec 40–43

    Google Scholar 

  30. Mitchell AJ (2001) Update and impact of a trematode that infects cultured channel catfish. Catfish J 16:17–27

    Google Scholar 

  31. Meepagala KM, Sturtz G, Mischke CC, Wise D, Duke S O (2004) Molluscicidal activity of vulgarone B against ram’s horn snail (Planorbella trivolvis). Pest Manag Sci 60:479–482

    Article  PubMed  CAS  Google Scholar 

  32. Meepagala KM, Sturtz G, Wise D, Wedge DE (2002) Molluscicidal and antifungal activity of Erigeron speciosus steam distillate. Pest Manag Sci 58:1043–1047

    Article  PubMed  CAS  Google Scholar 

  33. Joshi R C, Baucas NS, Joshi EE, Verzola EA (2003) CD-ROM: information database on the golden apple snail (golden kuhol), Pomacea canaliculata (Lamarck): a terminal report submitted to the Department of Agriculture-Cordillera Highland Agricultural Resource Management Project. pp 18.

    Google Scholar 

  34. Adalla CB, Rejesus BM (1989) The golden apple snail, Pomacea sp., a serious pest of lowland rice in the Philippines. In: Henderson I (ed) Slugs and snails in world agriculture. Proceedings of a symposium organized by the British Crop Protection, pp. 417–422

    Google Scholar 

  35. Ang W (1984) Snails in human diet. Greenfields 14:30–31

    Google Scholar 

  36. Sin TS (2003) Damage potential and control of Pomacea canaliculata (Lamarck) in irrigated rice and its control by cultural approaches. Int J Pest Mgmt 49:49–55

    Article  CAS  Google Scholar 

  37. Hill SA, Miyasaka SC (2000) Taro responses to excess copper in solution culture. HortScience 35:863–867

    CAS  Google Scholar 

  38. Litsinger JA, Estano DB (1993) Management of the GAS (Pomacea canaliculata Lamarck) in rice. Crop Prot 12:363–370

    Article  Google Scholar 

  39. Shih CC, Chang SS, Chan Y-L, Chen JC, Chang MW, Tung MS, Deng JF, Yang CC (2004) Acute metaldehyde poisoning in Taiwan. Vet Human Toxicol 46:140–143

    Google Scholar 

  40. Joshi RC, Meepagala KM, Sturtz G, Cagauan AG, Mendoza CO, Dayan FE, Duke SO (2005) Molluscicidal activity of vulgarone B from Artemisia douglasiana (Besser) against the invasive, alien, mollusc pest, Pomacea canaliculata (Lamarck). Int J Pest Manag 51:75–180

    Article  Google Scholar 

  41. Knudsen CG, Lee DL, Michaely WJ, Chin H-L, Nguyen NH, Rusay J, Cromartie TH, Gray R, Lake BH, Fraser EM, Cartwright D (2000) Discovery of the triketone class of HPPD-inhibiting herbicides and their relationship to naturally occurring β-triketones. In: Allelopathy in ecological agriculture and forestry. Proceedings of the 3rd International Congress on Allelopathy in Ecological Agriculture and Forestry, pp 101–111

    Google Scholar 

  42. Hellyer RO (1968) The occurrence of β-triketones in the steam-volatile oils of some myrtaceous Australian plants. Austral J Chem 21:2825–2828

    Article  CAS  Google Scholar 

  43. Gray RA, Tseng CK, Rusay RJ (1980) 1-Hydroxy-2-(alkylketo)-4,4,6,6-tetramethyl cyclohexen-3,5-dione herbicides. US Patent 4,202,840

    Google Scholar 

  44. Beaudegnies R, Edmunds AJF, Fraser TEM, Hall RG, Hawkes TR, Mitchell G, Schaetzer J, Wendeborn S, Wibley J (2009) Herbicidal 4-hydroxyphenylpyruvate dioxygenase inhibitors—a review of the triketone chemistry story from a Syngenta perspective. Bioorga Medicin Chem 17:4134–4152

    Article  CAS  Google Scholar 

  45. Douglas MH, van Klink JW, Smallfield BM, Perry NB, Anderson RE, Johnstone P, Weavers RT (2004) Essential oils from New Zealand manuka: triketone and other chemotypes of Leptospermum scoparium. Phytochemistry 65:1255–1264

    Article  PubMed  CAS  Google Scholar 

  46. van Klink JW, Brophy NB, Perry NB, Weavers RT (1999) Triketones from myrtaceae: Isoleptospermone from Leptospermum scoparium and papuanone from Corymbia dallachiana. J Nat Prod 62:487–489

    Article  PubMed  CAS  Google Scholar 

  47. Douglas M, Anderson R, van Klink J, Perry N, Smallfield B (2001) Defining North Island manuka chemotype resources. Ministry of Agriculture and Forestry Sustainable Farming Fund

    Google Scholar 

  48. Brophy JJ, Forster PI, Goldsack RJ, Hibbert DB, Punruckvong A (1997) Variation in Callistemon viminalis (Myrtaceae): new evidence from leaf essential oils. Austral Systematic Bot 10:1–13

    Article  Google Scholar 

  49. Lassak EV, Smyth MM (1994) Steam volatile leaf oil of Callistemon linearis (Schrader et Wendl.) Sweet. J Essential Oil Res 6:403–406

    Article  CAS  Google Scholar 

  50. Lee DL, Prisbylla MP, Cromartie TH, Dagarin DP, Howard SW, Provan WM, Ellis MK, Fraser T, Mutter LC (1997) The discovery and structural requirements of inhibitors of p-hydroxyphenylpyruvate dioxygenase. Weed Sci 45:601–609

    CAS  Google Scholar 

  51. Norris SR, Barrette TR, DellaPenna D (1995) Genetic dissection of carotenoid synthesis in Arabidopsis defines plastoquinone as an essential component of phytoene desaturation. Plant Cell 7:2139–2149

    PubMed  CAS  Google Scholar 

  52. Pallett KE, Little JP, Sheekey M, Veerasekaran P (1998) The mode of action of isoxaflutole I. Physiological effects, metabolism, and selectivity. Pestic Biochem Physiol 62:113–124

    Article  CAS  Google Scholar 

  53. Dayan FE, Duke SO, Sauldubois A, Singh N, McCurdy C, Cantrell CL (2007) p-Hydroxyphenylpyruvate dioxygenase is a herbicidal target site for β-triketones from Leptospermum scoparium. Phytochemistry 68:2004–2014

    Article  PubMed  CAS  Google Scholar 

  54. Dayan FE, Singh N, McCurdy C, Godfrey CA, Larsen L, Weavers RT, Van Klink JW, Perry NB (2009) β-triketone inhibitors of plant p-hydroxyphenylpyruvate dioxygenase: modeling and comparative molecular field analysis of their interactions. J Agric Food Chem 57:5194–5200

    Article  PubMed  CAS  Google Scholar 

  55. Dayan FE, Howell JL, Marais JM, Ferreira D, Koivunen ME (2011) Manuka oil, a natural herbicide with preemergence activity. Weed Sci 59:464–469

    Article  CAS  Google Scholar 

  56. Duke SO, Rimando AM, Duke MV, Paul RN, Ferreria JFS, Smeda RJ. (1999) Sequestration of phytotoxins by plants: Implications for biosynthetic production. In: Cutler HA, Cutler SJ (eds) Natural products: agrochemicals and pharmaceuticals. CRC Press, Boca Raton, pp 127–136

    Google Scholar 

  57. Dayan FE, Duke SO (2003) Trichomes and root hairs: natural pesticide factories. Pesticide Outlook 4:175–178

    Article  Google Scholar 

  58. Carr DJ, Carr SGM (1970) Oil glands and ducts in Eucalyptus l’herit. II. Development and structure of oil glands in the embryo. Austral J Bot 18:191–212

    Article  Google Scholar 

  59. Fahn A (1988) Secretory tissues in vascular plants. New Phytol 108:229–257

    Article  Google Scholar 

  60. List S, Brown PH, Walsh KB (1995) Functional anatomy of oil glands of Melaleuca alternifolia (Myrtaceae). Austral J Bot 43:629–641

    Article  Google Scholar 

  61. Singh IP, Sidana J, Bharate SB, Foley WJ (2010) Pholoroglucinol compounds of natural origin: synthetic aspects. Nat Prod Rep 27:393–416

    Article  PubMed  CAS  Google Scholar 

  62. Austin MB, Noel JP (2003) The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rept 20:79–110

    Article  CAS  Google Scholar 

  63. Paniego NB, Zuurbier KWM, Fung SY, van der Heijden R, Schefeer, JJC, Verpoorte R (1999) Phlorisovalerophenone synthase, a novel polyketide synthase from hop (Humulus lupulus L.) cones. Eur J Biochem 262:612–616

    Article  PubMed  CAS  Google Scholar 

  64. Hughes P (2000) The significance of iso-α-acids for beer quality. J Instit Brewing 106:271–276

    Article  CAS  Google Scholar 

  65. Okada Y, Ito K (2001) Cloning and analysis of valerophenone synthase gene expressed specifically in lupulin gland of hop (Humulus lupulus L.). Biosci Biotechnol Biochem 65:50–155

    Article  Google Scholar 

  66. Penttila A, Kapadia GJ, Fales HM (1965) The biosynthesis in vivo of methylenebisphloroglucinol derivatives. J Amer Chem Soc 87:4402–4403

    Article  CAS  Google Scholar 

  67. Schrader KK, de Regt MQ, Tidwell PR, Tucker CS, Duke SO (1998) Selective growth inhibition of the musty-odor producing cyanobacterium Oscillatoria cf. chalybea by natural compounds. Bull Environ Contamination Toxicol 60:651–658

    Article  CAS  Google Scholar 

  68. Schrader KK, Nanayakkara NPD, Tucker CS, Rimando AM, Ganzera M, Schaneberg BT (2003) Novel derivatives of 9,10-anthraquinone are selective algicides against the musty-odor cyanobacterium Oscillatoria perornata. Appl Environ Microbiol 69:5319–5327

    Article  PubMed  CAS  Google Scholar 

  69. Schrader KK, Nanayakkara NPD (2005) Selective algai-cides for control of cyanochloronta. US Patent 6,949,250, September 2005

    Google Scholar 

  70. Dayan FE, Rimando AM, Pan Z, Baerson SR, Gimsing A-L, Duke SO (2010) Molecules of interest: Sorgoleone. Phytochemistry 71:1032–1039

    Article  PubMed  CAS  Google Scholar 

  71. Barbosa LCA, Ferreira ML, Demuner AJ, da Silva AA, de Cassia Pereira R (2001) Preparation and phytotoxicity of sorgoleone analogues. Quim Nova 24:751–755

    Article  CAS  Google Scholar 

  72. de Souza CN, de Souza IF, Pasqual M (1999) Extração e ação de sorgoleone sobre o crescimento de plantas. Ciênc Agrotechnol 23:331–338

    CAS  Google Scholar 

  73. Einhellig FA, Souza IF (1992) Phytotoxicity of sorgoleone found in grain sorghum root exudates. J Chem Ecol 18:1–11

    Article  PubMed  CAS  Google Scholar 

  74. Forney DR, Foy CL, Wolf DD (1985) Weed suppression in no-till alfalfa (Medicago sativa) by prior cropping with summer-annual forage grasses. Weed Sci 33:490–497

    Google Scholar 

  75. Netzly DH, Butler LG (1986) Roots of sorghum exude hydrophobic droplets containing biologically active components. Crop Sci 26:775–778

    Article  CAS  Google Scholar 

  76. Panasiuk O, Bills DD, Leather GR (1986) Allelopathic influence of Sorghum bicolor on weeds during germination and early development of seedlings. J Chem Ecol 12:1533–1543

    Article  Google Scholar 

  77. Rasmussen JA, Hejl AM, Einhellig FA, Thomas JA (1992) Sorgoleone from root exudate inhibits mitochondrial functions. J Chem Ecol 18:197–207

    Article  PubMed  CAS  Google Scholar 

  78. Einhellig FA, Rasmussen JA, Hejl AM, Souza IF (1993) Effects of root exudates sorgoleone on photosynthesis. J Chem Ecol 19:369–375

    Article  PubMed  CAS  Google Scholar 

  79. Gonzalez VM, Kazimir J, Nimbal C, Weston LA, Cheniae GM (1997) Inhibition of a photosystem II electron transfer reaction by the natural product sorgoleone. J Agric Food Chem 45:1415–1421

    Article  CAS  Google Scholar 

  80. Czarnota MA, Paul RN, Dayan FE, Nimbal CI, Weston LA (2001) Mode of action, localization of production, chemical nature, and activity of sorgoleone: a potent PSII inhibitor in Sorghum spp. root exudates. Weed Technol 15:813–825

    Article  CAS  Google Scholar 

  81. Weston LA, Czarnota MA (2001) Activity and persistence of sorgoleone, a long-chain hydroquinone produced by Sorghum bicolor. J Crop Prod 4:363–377

    Article  CAS  Google Scholar 

  82. Meazza G, Scheffler BE, Tellez MR, Rimando AM, Nanayakkara NPD, Khan IA, Abourashed EA, Romagni, JG, Duke SO, Dayan FE (2002) The inhibitory activity of natural products on plant p-hydroxyphenylpyruvate dioxygenase. Phytochemistry 59:281–288

    Article  Google Scholar 

  83. Demuner LAJ, Barbosa CA, Luiz S, Chinelatto LS, Reis C (2005) Sorption and persistence of sorgoleone in red–yellow latosol. Quim Nova 28:451–455

    Article  CAS  Google Scholar 

  84. Czarnota MA, Rimando AM, Weston LA (2003) Evaluation of root exudates of seven sorghum accessions. J Chem Ecol 29:2073–2083

    Article  PubMed  CAS  Google Scholar 

  85. Dayan FE, Watson SB, Nanayakkara NPD (2007) Biosynthesis of lipid resorcinols and benzoquinones in isolated secretory plant root hairs. J Exp Bot 58:3263–3272

    Article  PubMed  CAS  Google Scholar 

  86. Pan Z, Rimando AM, Baerson SR, Fishbein M, Duke SO (2007) Functional characterization of desaturases involved in the formation of the terminal double bond of an unusual 16:3Δ9,12,15 fatty acid isolated from Sorghum bicolor root hairs. J Biol Chem 282:4326–4335

    Article  PubMed  CAS  Google Scholar 

  87. Cook D, Rimando AM, Clemente TE, Schröder J, Dayan FE, Nanayakkara N, Pan Z, Noonan BP, Fishbein M, Abe I, Duke SO, Baerson SR (2010) Alkylresorcinol synthases expressed in Sorghum bicolor root hairs play an essential role in the biosynthesis of the allelopathic benzoquinone sorgoleone. Plant Cell 22:867–887

    Article  PubMed  CAS  Google Scholar 

  88. Fate GD, Lynn DG (1996) Xenognosin methylation is critical in defining the chemical potential gradient that regulates the spatial distribution in Striga pathogenesis. J Am Chem Soc 118:11369–11376

    Article  CAS  Google Scholar 

  89. Dayan FE, Kagan IA, Rimando AM (2003) Elucidation of the biosynthetic pathway of the allelochemical sorgoleone using retrobiosynthetic NMR analysis. J Biol Chem 278:28607–28611

    Article  PubMed  CAS  Google Scholar 

  90. Baerson SR, Dayan FE, Rimando AM, Nanayakkara NPD, Liu C-J, Schröder J, Fishbein M., Pan Z, Kagan IA, Pratt LH, Cordonnier-Pratt M-M, Duke SO (2008) A functional genomics investigation of allelochemical biosynthesis in Sorghum bicolor root hairs. J Biol Chem 283:3231–3247

    Article  PubMed  CAS  Google Scholar 

  91. Duke SO, Scheffler BE, Dayan FE, Ota E (2001) Strategies for using transgenes to produce allelopathic crops. Weed Technol 15:826–834

    Article  CAS  Google Scholar 

  92. Duke SO, Baerson SR, Rimando AM, Pan Z, Dayan FE, Belz RG (2007) Biocontrol of weeds with allelopathy: conventional and transgenic approaches. In Vurro M, Gressel J (eds) Novel biotechnologies for biocontrol agent enhancement and management. Springer, Dordrecht, pp 75–85

    Chapter  Google Scholar 

  93. Xu M, Galhano R, Wiemann P, Bueno E, Tiernan M, Wu W, Chung I-M, Gershenzon J, Tudzynski B, Sesma A, Peters RJ (2012) Genetic evidence for natural product-mediated plant-plant allelopathy in rice (Oryza sativa). New Phytol 193:570–575

    Article  PubMed  CAS  Google Scholar 

  94. Rimando AM, Pan Z, Polaschock JJ, Dayan FE, Mizuno C, Snook ME, Liu C-J, Baerson SR (2012) In planta production of the highly potent resveratrol analogue pterostilbene via stilbene synthase and O-methyltransferase co-expression. Plant Biotech J 10:269–283

    Article  CAS  Google Scholar 

  95. Slaughter AR, Hamiduzzaman MM, Neuhaus J-M, Mauch-Mani M (2008) Beta-aminobutyric acid-induced resistance in grapevine against downy mildew: involvement of pterostilbene. Eur J Plant Pathol 122:185–195

    Article  CAS  Google Scholar 

  96. Joseph JA, Fisher DR, Cheng V, Rimando AM, Shukitt-Hale B (2008) Cellular and behavioral effects of stilbene resveratrol analogues: implication for reducing the deleterious effects of aging. J Agric Food Chem 56:10544–10551

    Article  PubMed  CAS  Google Scholar 

  97. Rimando AM, Nagmani R, Feller DR, Yokoyama W (2005) Pterostilbene, a new agonist for the peroxisome proliferator-activated receptor α-isoform, lowers plasma lipoproteins and cholesterol in hypercholesterolemic hamsters. J Agric Food Chem 53:3403–3407

    Article  PubMed  CAS  Google Scholar 

  98. Paul S, Rimando AM, Lee HJ, Ji Y, Reddy B, Suh N (2009) Anti-inflammatory action of pterostilbene is mediated through the p38 mitogen-activated protein kinase pathway in colon cancer cells. Cancer Prevention Res 2:650–657

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen O. Duke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Duke, S. et al. (2013). Phytochemicals for Pest Management: Current Advances and Future Opportunities. In: Gang, D. (eds) 50 Years of Phytochemistry Research. Recent Advances in Phytochemistry, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-319-00581-2_5

Download citation

Publish with us

Policies and ethics