Skip to main content

Electrospray Ionization Traveling Wave Ion Mobility Spectrometry Mass Spectrometry for the Analysis of Plant Phenolics: An Approach for Separation of Regioisomers

  • Chapter
  • First Online:
50 Years of Phytochemistry Research

Part of the book series: Recent Advances in Phytochemistry ((RAPT,volume 43))

  • 926 Accesses

Abstract

The use of ion-mobility spectrometry (IMS) coupled to mass spectrometry (IMS–MS) for biomolecule analyses has steadily increased over the past two decades, and is now applied to both proteomic and metabolomic investigations. This chapter describes the application of traveling-wave ion-mobility spectrometry–mass spectrometry (TWIMS–MS) to the analysis of a selection of bioactive phytochemicals used in dietary supplements. Applications include the analysis of grape seed proanthocyanidins and the structural characterization of bioactive constituents of dietary supplements using TWIMS-MS in conjunction with tandem mass spectrometry. We also discussed is the application of TWIMS-MS for the gas-phase mobility separation of structural isomers and the estimation of collision cross sections for a small selection of phenolic compounds from hop Recent applications of IMS–MS to a broad range of biomolecule measurements have demonstrated that IMS–MS has emerged as a powerful analytical technique capable of providing the separation space necessary to analyze highly complex samples. We give a perspective on emerging applications of IMS–MS for small molecule and biopolymer applications.The combination of devices that allow real-time monitoring of living systems using IMS–MS is an exciting avenue of facilitating system-biology experiments. The future of IMS–MS is bright and full of opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tsao R (2010) Chemistry and biochemistry of dietary polyphenols. Nutrients 2:1231–1246

    Article  PubMed  CAS  Google Scholar 

  2. Stevens JF, Page JE (2004) Xanthohumol and related prenylflavonoids from hops and beer: to your good health! Phytochemistry 65:1317–1330

    Article  PubMed  CAS  Google Scholar 

  3. Miranda CL et al (2012) Flavonoids. eLS, Wiley Online Library

    Google Scholar 

  4. Counterman AE, Clemmer DE (2002) Cis-trans signatures of proline-containing tryptic peptides in the gas phase. Anal Chem 74:1946–1951

    Article  PubMed  CAS  Google Scholar 

  5. Kaleta DT, Jarrold MF (2003) Helix-turn-helix motifs in unsolvated peptides. J Am Chem Soc 125:7186–7187

    Article  PubMed  CAS  Google Scholar 

  6. Ruotolo BT et al (2004) Ion mobility-mass spectrometry applied to cyclic peptide analysis: conformational preferences of gramicidin S and linear analogs in the gas phase. J Am Soc Mass Spectrom 15:870–878

    Article  PubMed  CAS  Google Scholar 

  7. Ruotolo BT et al (2002) Observation of conserved solution-phase secondary structure in gas-phase tryptic peptides. J Am Chem Soc 124:4214–4215

    Article  PubMed  CAS  Google Scholar 

  8. Ruotolo BT et al (2005) Evidence for macromolecular protein rings in the absence of bulk water. Science 310:1658–1661

    Article  PubMed  CAS  Google Scholar 

  9. Uetrecht C et al (2010) Ion mobility mass spectrometry of proteins and protein assemblies. Chem Soc Rev 39:1633–1655

    Article  PubMed  CAS  Google Scholar 

  10. Zilch LW et al (2007) Folding and unfolding of helix-turn-helix motifs in the gas phase. J Am Soc Mass Spectrom 18:1239–1248

    Article  PubMed  CAS  Google Scholar 

  11. Trimpin S, Clemmer DE (2008) Ion mobility spectrometry/mass spectrometry snapshots for assessing the molecular compositions of complex polymeric systems. Anal Chem 80:9073–9083

    Article  PubMed  CAS  Google Scholar 

  12. Trimpin S et al (2007) Resolving oligomers from fully grown polymers with IMS-MS. Anal Chem 79:7965–7974

    Article  PubMed  CAS  Google Scholar 

  13. Dear GJ et al (2010) Sites of metabolic substitution: investigating metabolite structures utilising ion mobility and molecular modelling. Rapid Commun Mass Spectrom 24:3157–3162

    Article  PubMed  CAS  Google Scholar 

  14. Cuyckens F et al (2011) Product ion mobility as a promising tool for assignment of positional isomers of drug metabolites. Rapid Commun Mass Spectrom 25:3497–3503

    Article  PubMed  CAS  Google Scholar 

  15. Dong L et al (2010) Collision cross-section determination and tandem mass spectrometric analysis of isomeric carotenoids using electrospray ion mobility time-of-flight mass spectrometry. Anal Chem [Epub ahead of print]

    Google Scholar 

  16. Bohrer BC, Clemmer DE (2011) Biologically-inspired peptide reagents for enhancing IMS-MS analysis of carbohydrates. J Am Soc Mass Spectrom 22:1602–1609

    Article  PubMed  CAS  Google Scholar 

  17. Dwivedi P et al (2010) Metabolic profiling of human blood by high resolution ion mobility mass spectrometry (IM-MS). Int J Mass Spectrom 298:78–90

    Article  PubMed  CAS  Google Scholar 

  18. Castro-Perez J et al (2011) Localization of fatty acyl and double bond positions in phosphatidylcholines using a dual stage CID fragmentation coupled with ion mobility mass spectrometry. J Am Soc Mass Spectrom 22:1552–1567

    Article  PubMed  CAS  Google Scholar 

  19. Kliman M et al (2011) Lipid analysis and lipidomics by structurally selective ion mobility-mass spectrometry. Biochim Biophys Acta 1811:935–945

    Article  PubMed  CAS  Google Scholar 

  20. Kanu AB et al (2008) Ion mobility-mass spectrometry. J Mass Spectrom 43:1–22

    Article  PubMed  CAS  Google Scholar 

  21. Verbeck GF et al (2002) A fundamental introduction to ion mobility mass spectrometry applied to the analysis of biomolecules. J Biomol Tech 13:56–61

    PubMed  Google Scholar 

  22. Bohrer BC et al (2008) Biomolecule analysis by ion mobility spectrometry. Annu Rev Anal Chem (Palo Alto Calif) 1:293–327

    Article  CAS  Google Scholar 

  23. Liu X et al (2007) Mapping the human plasma proteome by SCX-LC-IMS-MS. J Am Soc Mass Spectrom 18:1249–1264

    Article  PubMed  CAS  Google Scholar 

  24. Giles K et al (2004) Applications of a travelling wave-based radio-frequency-only stacked ring ion guide. Rapid Commun Mass Spectrom 18:2401–2414

    Article  PubMed  CAS  Google Scholar 

  25. Giles K et al (2011) Enhancements in travelling wave ion mobility resolution. Rapid Commun Mass Spectrom 25:1559–1566

    Article  PubMed  CAS  Google Scholar 

  26. Michaelevski I et al (2010) T-wave ion mobility-mass spectrometry: basic experimental procedures for protein complex analysis. J Vis Exp 41: e1985

    Google Scholar 

  27. Smith DP KT, Campuzano I, Malham RW, Berryman JT, Radford SE, Ashcroft AE (2009) Deciphering drift time measurements from travelling wave ion mobility spectrometry-mass spectrometry studies. Eur J Mass Spectrom (Chichester Eng) 15:113–130

    Article  CAS  Google Scholar 

  28. Monagas M et al (2010) MALDI-TOF MS analysis of plant proanthocyanidins. J Pharm Biomed Anal 51:358–372

    Article  PubMed  CAS  Google Scholar 

  29. Mouls L et al (2011) Comprehensive study of condensed tannins by ESI mass spectrometry: average degree of polymerisation and polymer distribution determination from mass spectra. Anal Bioanal Chem 400:613–623

    Article  PubMed  CAS  Google Scholar 

  30. Taylor AW et al (2003) Hop (Humulus lupulus L.) proanthocyanidins characterized by mass spectrometry, acid catalysis, and gel permeation chromatography. J Agric Food Chem 51:4101–4110

    Article  PubMed  CAS  Google Scholar 

  31. Porter PJ (1988) Flavans and proanthocyanidins. The Flavonoids 21–62

    Google Scholar 

  32. Aron PM, Kennedy JA (2008) Flavan-3-ols: nature, occurrence and biological activity. Mol Nutr Food Res 52:79–104

    Article  PubMed  CAS  Google Scholar 

  33. Hayasaka Y et al (2003) Characterization of proanthocyanidins in grape seeds using electrospray mass spectrometry. Rapid Commun Mass Spectrom 17:9–16

    Article  PubMed  CAS  Google Scholar 

  34. Harry EL et al (2009) Direct analysis of pharmaceutical formulations from non-bonded reversed-phase thin-layer chromatography plates by desorption electrospray ionisation ion mobility mass spectrometry. Rapid Commun Mass Spectrom 23:2597–2604

    Article  PubMed  CAS  Google Scholar 

  35. Williams JP et al (2009) Isomer separation and gas-phase configurations of organoruthenium anticancer complexes: ion mobility mass spectrometry and modeling. J Am Soc Mass Spectrom 20:1119–1122

    Article  PubMed  CAS  Google Scholar 

  36. http://www.indiana.edu/~clemmer/Research/Cross%20Section%20Database/Peptides/polyaminoacid_cs.htm.Accessed 14 Oct 2013

  37. http://www.indiana.edu/~nano/index.html.Accessed 14 Oct 2013

  38. Wyttenbach T et al (1997) Effect of the long-range potential on ion mobility measurements. J Am Soc Mass Spectrom 8:275–282

    Article  CAS  Google Scholar 

  39. Ruotolo BT et al (2008) Ion mobility-mass spectrometry analysis of large protein complexes. Nat Protoc 3:1139–1152

    Article  PubMed  CAS  Google Scholar 

  40. Knapman TW et al. (2010) Determining the topology of virus assembly intermediates using ion mobility spectrometry-mass spectrometry. Rapid Commun Mass Spectrom 24:3033–3042

    Article  PubMed  CAS  Google Scholar 

  41. Kennedy JA, Jones GP (2001) Analysis of proanthocyanidin cleavage products following acid-catalysis in the presence of excess phloroglucinol. J Agric Food Chem 49:1740–1746

    Article  PubMed  CAS  Google Scholar 

  42. Salbo R et al (2012) Traveling-wave ion mobility mass spectrometry of protein complexes: accurate calibrated collision cross-sections of human insulin oligomers. Rapid Commun Mass Spectrom 26:1181–1193

    Article  PubMed  CAS  Google Scholar 

  43. Li H et al (2012) Resolving structural isomers of monosaccharide methyl glycosides using drift tube and traveling wave ion mobility mass spectrometry. Anal Chem 84:3231–3239

    Article  PubMed  CAS  Google Scholar 

  44. Goodwin CR et al (2012) Structural mass spectrometry: rapid methods for separation and analysis of peptide natural products. J Nat Prod 75:48–53

    Article  PubMed  CAS  Google Scholar 

  45. Rand K et al (2011) ETD in a traveling wave ion guide at tuned Z-spray ion source conditions allows for site-specific hydrogen/deuterium exchange measurements. J Am Soc Mass Spectrom 22:1784–1793

    Article  PubMed  CAS  Google Scholar 

  46. Halgand F et al (2011) Dividing to unveil protein microheterogeneities: traveling wave ion mobility study. Anal Chem 83:7306–7315

    Article  PubMed  CAS  Google Scholar 

  47. Ridenour WB et al (2010) Structural characterization of phospholipids and peptides directly from tissue sections by MALDI traveling-wave ion mobility-mass spectrometry. Anal Chem 82:1881–1889

    Article  PubMed  CAS  Google Scholar 

  48. Dwivedi P et al (2010) Metabolic profiling of Escherichia coli by ion mobility-mass spectrometry with MALDI ion source. J Mass Spectrom 45:1383–1393

    Article  PubMed  CAS  Google Scholar 

  49. Kaplan K et al (2009) Monitoring dynamic changes in lymph metabolome of fasting and fed rats by electrospray ionization-ion mobility mass spectrometry (ESI-IMMS). Anal Chem 81:7944–7953

    Article  PubMed  CAS  Google Scholar 

  50. Enders JR et al (2010) Towards monitoring real-time cellular response using an integrated microfluidics-matrix assisted laser desorption ionisation/nanoelectrospray ionisation-ion mobility-mass spectrometry platform. IET Systems Biology 4:416–427

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia S. Maier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Maier, C., Zandkarimi, F., Wickramasekara, S., Morre, J., Stevens, J. (2013). Electrospray Ionization Traveling Wave Ion Mobility Spectrometry Mass Spectrometry for the Analysis of Plant Phenolics: An Approach for Separation of Regioisomers. In: Gang, D. (eds) 50 Years of Phytochemistry Research. Recent Advances in Phytochemistry, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-319-00581-2_2

Download citation

Publish with us

Policies and ethics