Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 222))

Abstract

Transposable Elements (TE) are sequences of DNA that move and transpose within a genome. TEs, as mutation agents, are quite important for their role in both genome alteration diseases and on species evolution. Several tools have been developed to discover and annotate TEs but no single one achieves good results on all different types of TEs. In this paper we evaluate the performance of several TEs detection and annotation tools and investigate if Machine Learning techniques can be used to improve their overall detection accuracy. The results of an in silico evaluation of TEs detection and annotation tools indicate that their performance can be improved by using machine learning classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergman, C.M., Quesneville, H.: Discovering and detecting transposable elements in genome sequences. Briefings in Bioinformatics 8(6), 382–392 (2007)

    Article  Google Scholar 

  2. Chénais, B., Caruso, A., Hiard, S., Casse, N.: The impact of transposable elements on eukaryotic genomes: From genome size increase to genetic adaptation to stressful environments. Gene (2012)

    Google Scholar 

  3. Casacuberta, E., Gonzlez, J.: The impact of transposable elements in environmental adaptation. Mol. Ecol. (2013)

    Google Scholar 

  4. Cowley, M., Oakey, R.J.: Transposable elements re-wire and fine-tune the transcriptome. PLoS Genet. 9(1) (2013)

    Google Scholar 

  5. Myers, E.W., Edgar, R.C.: PILER: identification and classification of genomic repeats. Bioinformatics 21, 152–158 (2005)

    Article  Google Scholar 

  6. Jurka, J., Klonowski, P., Dagman, V., Pelton, P.: Censora program for identification and elimination of repetitive elements from DNA sequences. Computers & Chemistry 20(1), 119–121 (1996)

    Article  Google Scholar 

  7. Jurka, J., Kapitonov, V.V., Pavlicek, A., Klonowski, P., Kohany, O., Walichiewicz, J.: Repbase update, a database of eukaryotic repetitive elements. Cytogentic and Genome Research 110, 462–467 (2005)

    Article  Google Scholar 

  8. Kim, Y.J., Lee, J., Han, K.: Transposable elements: No more ’junk dna’. Genomics Inform. 10(4), 226–233 (2012)

    Article  Google Scholar 

  9. Koso, H., Takeda, H., Yew, C.C., Ward, J.M., Nariai, N., Ueno, K., Nagasaki, M., Watanabe, S., Rust, A.G., Adams, D.J., Copeland, N.G., Jenkins, N.A.: Transposon mutagenesis identifies genes that transform neural stem cells into glioma-initiating cells. Proceedings of the National Academy of Sciences 109(44), E2998–E3007 (2012)

    Article  Google Scholar 

  10. Pearson, W.R., Lipman, D.J.: Rapid and sensitive protein similarity searches. Science 227(4693), 1435–1441 (1985)

    Article  Google Scholar 

  11. Llorns, C., Futami, R., Bezemer, D., Moya, A.: The ::::gypsy:::: Database (gydb) of mobile genetic elements. Nucleic Acids Research 36(Database-Issue), 38–46 (2008)

    Google Scholar 

  12. Lisch, D.: How important are transposons for plant evolution? Nat. Rev. Genet. 14(1), 49–61 (2013)

    Article  Google Scholar 

  13. McQuilton, P., St. Pierre, E., Thurmond, J.: Flybase 101 - the basics of navigating flybase. Nucleic Acids Research 40(Database-Issue), 706–714 (2012)

    Article  Google Scholar 

  14. Green, P., Smit, A.F.A., Hubley, R.: RepeatMasker Open-3.0

    Google Scholar 

  15. Kent, W.: Blat the blast-like alignment tool. Genome Research 12 (2002)

    Google Scholar 

  16. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann (2005)

    Google Scholar 

  17. Xu, Z., Wang, H.: LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Research 35(suppl. 2), W265–W268 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago Loureiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Loureiro, T., Camacho, R., Vieira, J., Fonseca, N.A. (2013). Boosting the Detection of Transposable Elements Using Machine Learning. In: Mohamad, M., Nanni, L., Rocha, M., Fdez-Riverola, F. (eds) 7th International Conference on Practical Applications of Computational Biology & Bioinformatics. Advances in Intelligent Systems and Computing, vol 222. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00578-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00578-2_12

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00577-5

  • Online ISBN: 978-3-319-00578-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics