Advertisement

Automatic Prediction of Poisonous Mushrooms by Connectionist Systems

  • María Navarro Cáceres
  • María Angélica González Arrieta
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 217)

Abstract

The research offers a quite simple view of methods to classify edible and poisonous mushrooms. In fact, we are looking for not only classification methods but also for an application which supports experts’ decisions. To achieve our aim, we will study different structures of neural nets and learning algorithms, and select the best one, according to the test results.

Keywords

Hide Layer Base Radial Function Threshold Error Connectionist System Nominal Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexopoulos, C.J.Y., Mins, C.W.: Introducción a la Micología. Omega, Barcelona (1985)Google Scholar
  2. 2.
    Ruiz Herrera, J.: El asombroso reino de los hongos. Avance y Perspectiva. Colección Micológica, Herbario de la Facultad de Biología (2001)Google Scholar
  3. 3.
    Micology experts and amateurs, http://www.micologia.net/
  4. 4.
    Palazó, F.: Setas para todos. Pirineo, Castellano (2001)Google Scholar
  5. 5.
    García Rollán, M.: Setas venenosas: intoxicaciones y prevención. Ministerio de Sanidad y Consumo, Madrid, Castellano (1990)Google Scholar
  6. 6.
    Chai, X., Deng, L., Yang, Q., Ling, C.X.: Test-Cost Sensitive Naive Bayes Classification (2003)Google Scholar
  7. 7.
    Bay, S.D., Pazzani, M.J.: Detecting Group Differences: Mining Contrast Sets. Data Min. Knowl. Discov. 5 (2001)Google Scholar
  8. 8.
    Li, J., Dong, G., Ramamohanarao, K., Wong, L.: DeEPs: A New Instance-based Discovery and Classification System. In: Proceedings of the Fourth European Conference on Principles and Practice of Knowledge Discovery in Databases (2001)Google Scholar
  9. 9.
    Matti, D., Vajda, P., Ebrahimi, T.: Mushroom Recognition (2010)Google Scholar
  10. 10.
    Hayking, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall (1998)Google Scholar
  11. 11.
    Bishop, M.: Neural Networks for Pattern Recognition. Oxford University Press (1995)Google Scholar
  12. 12.
    Jaynes, E.T.: Probability Theory: The Logic of Science. Cambridge University Press (2003)Google Scholar
  13. 13.
    Tao, K.K.: A closer look at the radial basis function (RBF) networks. In: Singh, A. (ed.) Conference Record of the Twenty-Seventh Asilomar Conference on Signals, Systems, and Computers. IEEE Comput. Soc. Press, Los Alamitos (1993)Google Scholar
  14. 14.
    Fine, T.L.: Feedforward Neural Network Methodology, 3rd edn. Springer, Nueva York (1999)Google Scholar
  15. 15.
    MacKay, D.J.C.: Information Theory, Inference and Learning Algorithms. Cambridge University Press (2004)Google Scholar
  16. 16.
    Alonso, G., Becerril, J.L.: Introducción a la inteligencia artificial. Multimedia Ediciones, S.A. Barcelona (1993)Google Scholar
  17. 17.
    Matlab Official Site, http://www.mathworks.es

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • María Navarro Cáceres
    • 1
  • María Angélica González Arrieta
    • 1
  1. 1.University of SalamancaSalamancaSpain

Personalised recommendations