Advertisement

Multiobjective Local Search Techniques for Evolutionary Polygonal Approximation

  • José L. GuerreroEmail author
  • Antonio Berlanga
  • José M. Molina
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 217)

Abstract

Polygonal approximation is based on the division of a closed curve into a set of segments. This problem has been traditionally approached as a single-objective optimization issue where the representation error was minimized according to a set of restrictions and parameters. When these approaches try to be subsumed into more recent multi-objective ones, a number of issues arise. Current work successfully adapts two of these traditional approaches and introduces them as initialization procedures for a MOEA approach to polygonal approximation, being the results, both for initial and final fronts, analyzed according to their statistical significance over a set of traditional curves from the domain.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coello, C., Lamont, G., Van Veldhuizen, D.: Evolutionary algorithms for solving multi-objective problems. Springer-Verlag New York Inc. (2007)Google Scholar
  2. 2.
    Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley (1973)Google Scholar
  3. 3.
    Guerrero, J., Berlanga, A., Molina, J.: Fitness-aware operators for evolutionary polygonal approximation. In: Applied Computing, pp. 283–290. IADIS (2012)Google Scholar
  4. 4.
    Guerrero, J.L., Berlanga, A., Molina, J.M.: Initialization procedures for multiobjective evolutionary approaches to the segmentation issue. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012, Part III. LNCS, vol. 7208, pp. 452–463. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Guerrero, J., Berlanga, A., Molina, J.: A multi-objective approach for the segmentation issue. Engineering Optimization 44(3), 267–287 (2012)CrossRefGoogle Scholar
  6. 6.
    Heckbert, P., Garland, M.: Survey of polygonal surface simplification algorithms. In: Multiresolution Surface Modeling Course. ACM Siggraph Course notes (1997)Google Scholar
  7. 7.
    Keogh, E., Chu, S., Hart, D., Pazzani, M.: Segmenting time series: A survey and novel approach. Data Mining in time series databases, 1–21 (2004)Google Scholar
  8. 8.
    Kolesnikov, A., Franti, P., Wu, X.: Multiresolution polygonal approximation of digital curves. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 2, pp. 855–858. IEEE (2004)Google Scholar
  9. 9.
    Ramer, U.: An iterative procedure for the polygonal approximation of plane curves. Computer Graphics and Image Processing 1, 244–256 (1972)CrossRefGoogle Scholar
  10. 10.
    Sarfraz, M.: Linear capture of digital curves. In: Interactive Curve Modeling, pp. 241–265. Springer, London (2008)CrossRefGoogle Scholar
  11. 11.
    Sato, Y.: Piecewise linear approximation of plane curves by perimeter optimization. Pattern Recognition 25(12), 1535–1543 (1992)CrossRefGoogle Scholar
  12. 12.
    Sklansky, J., Gonzalez, V.: Fast polygonal approximation of digitized curves. Pattern Recognition 12(5), 327–331 (1980)CrossRefGoogle Scholar
  13. 13.
    Yin, P.: Genetic algorithms for polygonal approximation of digital curves. International Journal of Pattern Recognition and Artificial Intelligence 13(7), 1061–1082 (1999)CrossRefGoogle Scholar
  14. 14.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. In: EUROGEN 2001, pp. 95–100. International Center for Numerical Methods in Engineering (CIMNE), Athens (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • José L. Guerrero
    • 1
    Email author
  • Antonio Berlanga
    • 1
  • José M. Molina
    • 1
  1. 1.University Carlos III of MadridColmenarejoSpain

Personalised recommendations