Multiobjective Local Search Techniques for Evolutionary Polygonal Approximation

  • José L. GuerreroEmail author
  • Antonio Berlanga
  • José M. Molina
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 217)


Polygonal approximation is based on the division of a closed curve into a set of segments. This problem has been traditionally approached as a single-objective optimization issue where the representation error was minimized according to a set of restrictions and parameters. When these approaches try to be subsumed into more recent multi-objective ones, a number of issues arise. Current work successfully adapts two of these traditional approaches and introduces them as initialization procedures for a MOEA approach to polygonal approximation, being the results, both for initial and final fronts, analyzed according to their statistical significance over a set of traditional curves from the domain.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coello, C., Lamont, G., Van Veldhuizen, D.: Evolutionary algorithms for solving multi-objective problems. Springer-Verlag New York Inc. (2007)Google Scholar
  2. 2.
    Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley (1973)Google Scholar
  3. 3.
    Guerrero, J., Berlanga, A., Molina, J.: Fitness-aware operators for evolutionary polygonal approximation. In: Applied Computing, pp. 283–290. IADIS (2012)Google Scholar
  4. 4.
    Guerrero, J.L., Berlanga, A., Molina, J.M.: Initialization procedures for multiobjective evolutionary approaches to the segmentation issue. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012, Part III. LNCS, vol. 7208, pp. 452–463. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Guerrero, J., Berlanga, A., Molina, J.: A multi-objective approach for the segmentation issue. Engineering Optimization 44(3), 267–287 (2012)CrossRefGoogle Scholar
  6. 6.
    Heckbert, P., Garland, M.: Survey of polygonal surface simplification algorithms. In: Multiresolution Surface Modeling Course. ACM Siggraph Course notes (1997)Google Scholar
  7. 7.
    Keogh, E., Chu, S., Hart, D., Pazzani, M.: Segmenting time series: A survey and novel approach. Data Mining in time series databases, 1–21 (2004)Google Scholar
  8. 8.
    Kolesnikov, A., Franti, P., Wu, X.: Multiresolution polygonal approximation of digital curves. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 2, pp. 855–858. IEEE (2004)Google Scholar
  9. 9.
    Ramer, U.: An iterative procedure for the polygonal approximation of plane curves. Computer Graphics and Image Processing 1, 244–256 (1972)CrossRefGoogle Scholar
  10. 10.
    Sarfraz, M.: Linear capture of digital curves. In: Interactive Curve Modeling, pp. 241–265. Springer, London (2008)CrossRefGoogle Scholar
  11. 11.
    Sato, Y.: Piecewise linear approximation of plane curves by perimeter optimization. Pattern Recognition 25(12), 1535–1543 (1992)CrossRefGoogle Scholar
  12. 12.
    Sklansky, J., Gonzalez, V.: Fast polygonal approximation of digitized curves. Pattern Recognition 12(5), 327–331 (1980)CrossRefGoogle Scholar
  13. 13.
    Yin, P.: Genetic algorithms for polygonal approximation of digital curves. International Journal of Pattern Recognition and Artificial Intelligence 13(7), 1061–1082 (1999)CrossRefGoogle Scholar
  14. 14.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. In: EUROGEN 2001, pp. 95–100. International Center for Numerical Methods in Engineering (CIMNE), Athens (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • José L. Guerrero
    • 1
    Email author
  • Antonio Berlanga
    • 1
  • José M. Molina
    • 1
  1. 1.University Carlos III of MadridColmenarejoSpain

Personalised recommendations