Application of Genetic Algorithms to Determine Closest Targets in Data Envelopment Analysis

  • Raul Martinez-MorenoEmail author
  • Jose J. Lopez-Espin
  • Juan Aparicio
  • Jesus T. Pastor
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 217)


This paper studies the application of a genetic algorithm (GA) for determining closest efficient targets in Data Envelopment Analysis. Traditionally, this problem has been solved in the literature through unsatisfactory methods since all of them are related in some sense to a combinatorial NP-hard problem. This paper presents and studies some algorithms to be used in the creation, crossover and mutation of chromosomes in a GA, in order to obtain an efficient metaheuristic which obtains better solutions.


Genetic Algorithms DEA Closest Targets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amirteimoori, A., Kordrostami, S.: A Euclidean distance-based measure of efficiency in data envelopment analysis. Optimization 59, 985–996 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Aparicio, J., Pastor, J.T.: On how to properly calculate the Euclidean distance-based measure in DEA. Optimization (2012), doi:10.1080/02331934.2012.655692Google Scholar
  3. 3.
    Aparicio, J., Ruiz, J.L., Sirvent, I.: Closest targets and minimum distance to the Pareto-efficient frontier in DEA. J. Prod. Anal. 28, 209–218 (2007)CrossRefGoogle Scholar
  4. 4.
    Burke, E., Hart, E., Kendall, G., Newall, J., Ross, P., Schulenburg, S.: Hyper-heuristics: An Emerging Direction in Modern Search Technology. In: Handbook of Metaheuristics, vol. 16, pp. 457–474 (2003)Google Scholar
  5. 5.
    Coelli, T., Rao, D.S.P., Battese, G.E.: An Introduction to Efficiency and Productivity Analysis. Kluwer Academic Publishers, Boston (1998)CrossRefzbMATHGoogle Scholar
  6. 6.
    Cooper, W.W., Seiford, L.M., Tone, K.: Data envelopment analysis: a comprehensive text with models, applications, references and DEA-solver software. Kluwer Academic Publishers, Boston (2000)Google Scholar
  7. 7.
    Jahanshahloo, G.R., Hosseinzadeh Lotfi, F., Zohrehbandian, M.: Finding the piecewise linear frontier production function in data envelopment analysis. Appl. Math. Compt. 163, 483–488 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Jahanshahloo, G.R., Hosseinzadeh Lotfi, F., Zhiani Rezai, H., Rezai Balf, F.: Finding strong defining hyperplanes of Production Possibility Set. Eur. J. Oper. Res. 177, 42–54 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Jahanshahloo, G.R., Vakili, J., Mirdehghan, S.M.: Using the minimun distance of DMUs from the frontier of the PPS for evaluating group performance of DMUs in DEA. Asia Pac. J. Oper. Res. 29(2), 1250010-1–1250010-25 (2012a)Google Scholar
  10. 10.
    Jahanshahloo, G.R., Vakili, J., Zarepisheh, M.: A linear bilevel programming problem for obtaining the closest targets and minimum distance of a unit from the strong efficient frontier. Asia Pac. J. Oper. Res. 29(2), 1250011-1–1250011-19 (2012b)Google Scholar
  11. 11.
    Mitchell, M.: An Introduction to Genetic Algorithm. MIT Ps (1998)Google Scholar
  12. 12.
    Pastor, J.T., Ruiz, J.L., Sirvent, I.: An Enhanced DEA Russell Graph Efficiency Measure. Eur. J. Oper. Res. 115, 596–607 (1999)CrossRefzbMATHGoogle Scholar
  13. 13.
    Pastor, J.T., Aparicio, J.: The relevance of DEA benchmarking information and the Least-Distance Measure: Comment. Math. Comput. Model. 52, 397–399 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Portela, M.C.A.S., Borges, P.C., Thanassoulis, E.: Finding Closest Targets in Non-Oriented DEA Models: The Case of Convex and Non-Convex Technologies. J. Prod. Anal. 19, 251–269 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Raul Martinez-Moreno
    • 1
    Email author
  • Jose J. Lopez-Espin
    • 1
  • Juan Aparicio
    • 1
  • Jesus T. Pastor
    • 1
  1. 1.Centro de Investigación OperativaUniversidad Miguel HernándezElcheSpain

Personalised recommendations