Advertisement

Pressure and Dimension

  • Luís Barreira
Part of the Springer Monographs in Mathematics book series (SMM)

Abstract

In this chapter we recall in a pragmatic manner all the necessary notions and results from the thermodynamic formalism and dimension theory. In particular, we introduce the notions of topological pressure, BS-dimension, Hausdorff dimension, lower and upper box dimensions and pointwise dimension. We emphasize that we consider the general case of the topological pressure for noncompact sets, which is crucial in multifractal analysis.

Keywords

Hausdorff Dimension Topological Entropy Equilibrium Measure Dimension Theory Multifractal Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    L. Abramov, On the entropy of a flow, Dokl. Akad. Nauk SSSR 128 (1959), 873–875. MathSciNetzbMATHGoogle Scholar
  2. 3.
    L. Barreira, Dimension and Recurrence in Hyperbolic Dynamics, Progress in Mathematics 272, Birkhäuser, Basel, 2008. zbMATHGoogle Scholar
  3. 12.
    L. Barreira and B. Saussol, Multifractal analysis of hyperbolic flows, Commun. Math. Phys. 214 (2000), 339–371. MathSciNetzbMATHCrossRefGoogle Scholar
  4. 17.
    L. Barreira and J. Schmeling, Sets of “non-typical” points have full topological entropy and full Hausdorff dimension, Isr. J. Math. 116 (2000), 29–70. MathSciNetzbMATHCrossRefGoogle Scholar
  5. 30.
    R. Bowen and D. Ruelle, The ergodic theory of axiom A flows, Invent. Math. 29 (1975), 181–202. MathSciNetzbMATHCrossRefGoogle Scholar
  6. 41.
    K. Falconer, Fractal Geometry. Mathematical Foundations and Applications, Wiley, New York, 2003. zbMATHCrossRefGoogle Scholar
  7. 63.
    G. Keller, Equilibrium States in Ergodic Theory, London Mathematical Society Student Texts 42, Cambridge University Press, Cambridge, 1998. zbMATHCrossRefGoogle Scholar
  8. 80.
    W. Parry and M. Pollicott, Zeta Functions and the Periodic Orbit Structure of Hyperbolic Dynamics, Astérisque 187–188, 1990. zbMATHGoogle Scholar
  9. 81.
    Ya. Pesin, Dimension Theory in Dynamical Systems: Contemporary Views and Applications, Chicago Lectures in Mathematics, Chicago University Press, Chicago, 1997. CrossRefGoogle Scholar
  10. 92.
    D. Ruelle, Thermodynamic Formalism, Encyclopedia of Mathematics and Its Applications 5, Addison-Wesley, Reading, 1978. zbMATHGoogle Scholar
  11. 106.
    P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics 79, Springer, Berlin, 1982. zbMATHCrossRefGoogle Scholar
  12. 108.
    L.-S. Young, Dimension, entropy and Lyapunov exponents, Ergod. Theory Dyn. Syst. 2 (1982), 109–124. zbMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Luís Barreira
    • 1
  1. 1.Departamento de MatemáticaInstituto Superior TécnicoLisboaPortugal

Personalised recommendations