Skip to main content

Abstract

Deterministic chaos has been observed in many systems and seems to be random-like for external observer. Chaos, especially of discrete systems, has been used on numerous occasions in place of random number generators in so called evolutionary algorithms. When compared to random generators, chaotic systems generate values via so called map function that is deterministic and thus, the next value can be calculated, i.e. between elements of random series is no deterministic relation, while in the case of chaotic system it is. Despite this fact, the very often use of chaotic generators improves the performance of evolutionary algorithms. In this paper, we discuss the behavior of two selected chaotic system (logistic map and Lozi system) with dependance on numerical precision and show that numerical precision causes the appearance of many periodic orbits and explain reason why it is happens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Persohn, K.J., Povinelli, R.J.: Analyzing logistic map pseudorandom number generators for periodicity induced by finite precision floating-point representation. Chaos, Solitons and Fractals 45, 238–245 (2012)

    Article  Google Scholar 

  2. Drutarovsky, M., Galajda, P.: A robust chaos-based true random number generator embedded in reconfigurable switched-capacitor hardware. In: 17th International Conference Radioelektronika, Brno, Czech Republic, April 24-25, vol. 1, 2, pp. 29–34 (2007)

    Google Scholar 

  3. Bucolo, M., Caponetto, R., Fortuna, L., Frasca, M., Rizzo, A.: Does chaos work better than noise? IEEE Circuits and Systems Magazine 2(3), 4–19 (2002)

    Article  Google Scholar 

  4. Caponetto, R., Fortuna, L., Fazzino, S., Xibilia, M.: Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Trans. Evol. Comput. 7(3), 289–304 (2003)

    Article  Google Scholar 

  5. Hu, H., Liu, L., Ding, N.: Pseudorandom sequence generator based on the Chen chaotic system. Computer Physics Communications 184(3), 765–768 (2013), doi:10.1016/j.cpc.2012.11.017

    Article  Google Scholar 

  6. Pluchino, A., Rapisarda, A., Tsallis, C.: Noise, synchrony, and correlations at the edge of chaos. Physical Review E 87(2) (2013), doi:10.1103/PhysRevE.87.022910

    Google Scholar 

  7. Zelinka, I., Celikovsky, S., Richter, H., Chen, G.: Evolutionary Algorithms and Chaotic Systems, p. 550. Springer, Germany (2010)

    Book  MATH  Google Scholar 

  8. Lozi, R.: Emergence Of Randomness From Chaos. International Journal of Bifurcation and Chaos 22(2), 1250021 (2012), doi:10.1142/S0218127412500216

    Article  MathSciNet  Google Scholar 

  9. Wang, X.-Y., Qin, X.: A new pseudo-random number generator based on CML and chaotic iteration. International Journal of Nonlinear Dynamics and Chaos in Engineering Systems 70(2), 1589–1592 (2012), doi:10.1007/s11071-012-0558-0

    Article  MathSciNet  Google Scholar 

  10. Pareek, N.K., Patidar, V., Sud, K.K.: A Random Bit Generator Using Chaotic Maps. International Journal of Network Security 10(1), 32–38 (2010)

    Google Scholar 

  11. Wang, X.-Y., Yang, L.: Design Of Pseudo-Random Bit Generator Based On Chaotic Maps. International Journal of Modern Physics B 26(32), 1250208 (9 pages) (2012), doi:10.1142/S0217979212502086

    Google Scholar 

  12. Davendra, D., Zelinka, I., Senkerik, R.: Chaos driven evolutionary algorithms for the task of PID control. Computers and Mathematics with Applications 60(4), 1088–1104 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Pluhacek, M., Senkerik, R., Davendra, D., Kominkova Oplatkova, Z.: On the Behaviour and Performance of Chaos Driven PSO Algorithm with Inertia Weight. Computers and Mathematics with Applications (in print), ISSN 0898-1221

    Google Scholar 

  14. Pluhacek, M., Budikova, V., Senkerik, R., Kominkova Oplatkova, Z., Zelinka, I.: On the Performance of Enhanced PSO Algorithm with Lozi Chaotic Map. In: Application of Modern Methods of Prediction, Modeling and Analysis of Nonlinear Systems. SCI, vol. 1, p. 18. Springer, Heidelberg (November 2012) (accepted for publication) ISSN: 1860-949X

    Google Scholar 

  15. Senkerik, R., Davendra, D., Zelinka, I., Oplatkova, Z., Pluhacek, M.: Optimization of the batch reactor by means of chaos driven differential evolution. In: Snasel, V., Abraham, A., Corchado, E.S. (eds.) SOCO Models in Industrial & Environmental Appl. AISC, vol. 188, pp. 93–102. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Yang, M., Guan, J., Cai, Z., Wang, L.: Self-adapting differential evolution algorithm with chaos random for global numerical optimization. In: Cai, Z., Hu, C., Kang, Z., Liu, Y. (eds.) ISICA 2010. LNCS, vol. 6382, pp. 112–122. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Coelho, L., Mariani, V.: Combining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effect. IEEE Transactions on Power Systems 21(2), 989–996 (2006), doi:10.1109/TPWRS.2006.873410

    Article  Google Scholar 

  18. Hu, G.-W.: Chaos-differential evolution for multiple sequence alignment. In: 3rd International Symposium on Intelligent Information Technology Application, Nanchang, Peoples R China, vol. 2, pp. 556–558., doi:10.1109/IITA.2009.511

    Google Scholar 

  19. Zhao, Q., Ren, J., Zhang, Z., Duan, F.: Immune co-evolution algorithm based on chaotic optimization. In: Workshop on Intelligent Information Technology Application (IITA 2007), Zhang Jiajie, Peoples R China, pp. 149–152.

    Google Scholar 

  20. Liua, B., Wanga, L., Jina, Y.-H., Tangb, F., Huanga, D.-X.: Improved particle swarm optimization combined with chaos. Chaos, Solitons & Fractals 25(5), 1261–1271 (2005)

    Article  Google Scholar 

  21. Gandomi, A., Yun, G., Yang, X., Talatahari, S.: Chaos-enhanced accelerated particle swarm optimization. Communications In Nonlinear Science and Numerical Simulation 18(2), 327–340 (2013), doi:10.1016/j.cnsns.2012.07.017

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Zelinka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Zelinka, I., Chadli, M., Davendra, D., Senkerik, R., Pluhacek, M., Lampinen, J. (2013). Hidden Periodicity – Chaos Dependance on Numerical Precision. In: Zelinka, I., Chen, G., Rössler, O., Snasel, V., Abraham, A. (eds) Nostradamus 2013: Prediction, Modeling and Analysis of Complex Systems. Advances in Intelligent Systems and Computing, vol 210. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00542-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00542-3_7

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00541-6

  • Online ISBN: 978-3-319-00542-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics