Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 210))

Abstract

The goal of this paper is to analyze the Czech Gross domestic product (GDP) and to find chaos in the Czech GDP. At first we will estimate the time delay and the embedding dimension, which is needed for the Lyapunov exponent estimation and for the phase space reconstruction. Subsequently we will compute the largest Lyapunov exponent, which is one of the important indicators of chaos. Then we will calculate the 0-1 test for chaos. Finally we will compute the Hurst exponent by Rescaled Range analysis and by dispersional analysis. The Hurst exponent is a numerical estimate of the predictability of a time series. In the end we will display a phase portrait of detrended GDP time series. The results indicated that chaotic behaviors obviously exist in GDP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bassingthwaghte, J.B.: Physiological heterogeneity: Fractals link determinism and randomness in structure and function. News in Physiological Sciences 3, 5–10 (1988)

    Google Scholar 

  2. Dawes, J.H.P., Freeland, M.C.: The ‘0–1 test for chaos’ and strange nonchaotic attractors (2008), people.bath.ac.uk/jhpd20/publications

  3. Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33, 1134–1140 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. HoráK, J., KrlíN, L., Raidl, A.: Deterministický chaos a jeho fyzikální aplikace, Academia, Praha, 437 (2003)

    Google Scholar 

  5. Galka, A.: Topics in Nonlinear Time Series Analysis. World Scientific (2000)

    Google Scholar 

  6. Gotthans, T.: Advanced algorithms for the analysis of data sequences in Matlab, Master’s Thesis, University of technology Brno (2010)

    Google Scholar 

  7. Gottwald, G.A., Melbourne, I.: A new test for chaos in deterministic systems. Proc. Roy. Soc. A 460, 603–611 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Grassberg, P., Procaccia, I.: Characterization of strange attractors. Phys. Rev. Lett. 50, 346 (1983)

    Article  MathSciNet  Google Scholar 

  9. Henry, B., Lovell, N., Camacho, F.: Nonlinear dynamics time series analysis. In: Akay, M. (ed.) Nonlinear Biomedical Signal Processing, pp. 1–39. Insititue of Electrical and Electronics Engineers, Inc. (2001)

    Google Scholar 

  10. Hurst, H.E.: Long term storage capacity of reservoirs. Trans. Am. Soc. Eng. 116, 770–799 (1951)

    Google Scholar 

  11. Kennel, M.B., Brown, R., Abarbanel, H.D.I.: Determining embedding dimension for phase space reconstruction using a geometrical construction. Phys. Rev. A 45, 3403–3411 (1992)

    Article  Google Scholar 

  12. Kodba, S., Perc, M., Marhl, M.: Detecting chaos from a time series. European Journal of Physics 26, 205–215 (2005)

    Article  Google Scholar 

  13. Kříž, R.: Chaos in GDP. Acta Polytechnica 51(5) (2011)

    Google Scholar 

  14. Lorenz, H.-W.: Nonlinear Dynamical Economics and Chaotic Motion. Springer (1989)

    Google Scholar 

  15. Mandelbrot, B.B.: The Fractal Geometry of Nature. W.H. Freeman and Co. (1983)

    Google Scholar 

  16. Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10, 422 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  17. Packard, N.H., Crutchfield, J.P., Farmer, J.D., Shaw, R.S.: Geometry from a time series. Phys. Rev. Lett. 45, 712–726 (1980)

    Article  Google Scholar 

  18. Rosenstein, M.T., Collins, J.J., Luca, C.J.: A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 65, 117–134 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Takens, F.: Detecting Strange Attractor in Turbulence. In: Rand, D.A., Young, L.S. (eds.) Dynamical Systems and Turbulence, Warwick 1980. Lecture Notes in Mathematics, vol. 898, p. 366. Springer, Berlin (1981)

    Chapter  Google Scholar 

  20. Theiler, J., Eubank, J., Longtin, A., Galdrikian, B., Farmer, J.D.: Testing for nonlinearity in time series: The method of surrogate data. Physica D 58, 77 (1992)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radko Kříž .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Kříž, R. (2013). Chaotic Analysis of the GDP Time Series. In: Zelinka, I., Chen, G., Rössler, O., Snasel, V., Abraham, A. (eds) Nostradamus 2013: Prediction, Modeling and Analysis of Complex Systems. Advances in Intelligent Systems and Computing, vol 210. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00542-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00542-3_36

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00541-6

  • Online ISBN: 978-3-319-00542-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics