Skip to main content

Nanocrystalline Tungsten Carbide

  • Chapter
  • First Online:
Tungsten Carbides

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 184))

  • 2880 Accesses

Abstract

In this chapter, attention will be given mainly to the production methods and investigation of particle size, microstructure and some properties of powders of tungsten carbide WC with a particle size from 20 to 200–300 nm, i.e. nanocrystalline and submicrocrystalline powders. Using an X-ray diffraction method for determining small particle size will be considered in detail also.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gleiter H. Materials with ultrafine microstructure: retrospectives and perspectives. Nanostruct Mater. 1992;1(1):1–19.

    Google Scholar 

  2. Birringer R, Gleiter H. Nanocrystalline materials. In: Cahn RW, editor. Encyclopedia of material science and engineering. vol. 1. Oxford: Pergamon Press; 1988. p. 339–49.

    Google Scholar 

  3. Siegel RW. Cluster—assembled nanophase materials. Ann Rev Mater Sci. 1991;21:559-78.

    Google Scholar 

  4. Siegel R. Nanostructured materials—mind over matter. Nanostruct Mater. 1993;3(1–3);1–18.

    Google Scholar 

  5. Schaefer H-E. Nanoscience. The science of the small in physics, engineering, chemistry, biology and medicine. Heidelberg: Springer; 2010. 772 pp.

    Google Scholar 

  6. Siegel RW. What do we really know about the atomic-scale structures of nanophase materials? J Phys Chem Solids. 1994;55(10):1097–106.

    Google Scholar 

  7. Morokhov ID, Trusov LI, Chizhik SP. Ultra-dispersed metallic substances. Moscow: Atomizdat; 1977. 264 pp. (in Russian).

    Google Scholar 

  8. Morokhov ID, Petinov VI, Trusov LI, Petrunin VF. Structure and properties of small metallic particles. Uspekhi Fiz. Nauk. 1981;133(4):653-92 (in Russian).

    Google Scholar 

  9. Morokhov ID, Trusov LI, Lapovok VN. Physical phenomena in ultra-dispersed substances. Moscow: Energoatomizdat:1984. 224 pp. (in Russian).

    Google Scholar 

  10. Petrov YuI. Physics of small particles. Moscow; Nauka: 1982. 360 pp. (in Russian).

    Google Scholar 

  11. Petrov YuI. Clusters and small particles. Moscow: Nauka: 1986. 368 pp. (in Russian).

    Google Scholar 

  12. Gusev AI. Effects of the nanocrystalline state in solids. Uspekhi Fiz. Nauk. 1998;168(1):55–83. (in Russian) (Engl. transl.: Physics - Uspekhi. 1998;41(1);49–76).

    Google Scholar 

  13. Gusev AI, Rempel AA. Nanocrystalline materials. Moscow: Nauka; 2000. 224 pp. (in Russian).

    Google Scholar 

  14. Gusev AI, Rempel AA. Nanocrysnalline materials. Cambridge: Cambridge Intern. Science Publ; 2004. 351 pp.

    Google Scholar 

  15. Gusev AI. Nanomaterials, nanostructures, and nanotechnologies. 2nd edn. Moscow: Nauka - Fizmatlit; 2007. 416 pp. (in Russian).

    Google Scholar 

  16. Krivoglaz MA. Theory of X-ray and thermal-neutron scattering by real crystals. New York: Plenum Press; 1969.

    Google Scholar 

  17. Rempel AA, Rempel SV, Gusev AI. Quantitative assesment of homogeneity of nonstoichiometric compounds. Dokl. Akad. Nauk. 1999;369(4):486–490. (in Russian) (Engl. Transl.: Doklady Phys. Chem. 1999;369(4–6):321–325).

    Google Scholar 

  18. Rempel AA, Gusev AI, Preparation of disordered and ordered highly nonstoichiometric carbides and evaluation of their homogeneity. Fiz Tverd Tela. 2000;42(7):1243–1249. (in Russian) (Engl. Transl.: Phys. Solid State. 2000;42(7):1280–1286).

    Google Scholar 

  19. Gusev AI, Rempel AA. Nonstoichiometry, disorder and order in solids. Ekaterinburg: Ural Division of the Rus. Acad. Sci. 2001. 580 pp. (in Russian).

    Google Scholar 

  20. Gusev AI, Rempel AA, Magerl AJ. Disorder and order in strongly nonstoichiometric compounds. Transition metal carbides, nitrides and oxides. Berlin: Springer; 2001. 608 pp.

    Google Scholar 

  21. Gusev AI. Nonstoichiometry, disorder, short-range and long-order in solids. Moscow: Nauka - Fizmatlit, 2007. 856 pp. (in Russian).

    Google Scholar 

  22. Kurlov AS, Gusev AI. Determination of the particle sizes, microstrains, and degree of inhomogeneity in nanostructured materials from X-ray diffraction data. Fiz Khim Stekla. 2007;33(3):383–92. (in Russian) (Engl. Transl.: Glass Phys Chem. 2007;33(3):276–82).

    Google Scholar 

  23. Gusev AI, Kurlov AS. Characterization of nanocrystalline materials by the size of particles (grains). Metallofizika i Nov. Tekhnologii. 2008;30(5):C.679–94. (in Russian).

    Google Scholar 

  24. Kozhevnikova NS, Kurlov AS, Uritzkaya AA, Rempel AA. Diffraction analysis of nanocrystalline particle size of lead and cadmium sulfides prepared by chemical deposition from aqueous solutions. Zh Strukt Khimii. 2004;45:147–53. (in Russian) (Engl. Transl.: J. Struct. Chem. 2004;45:S154–9).

    Google Scholar 

  25. Prabal D. On use of pseudo-Voigt profiles in diffraction line broadening analyses. Fizika A (Croatia). 2000;9(2):61–6.

    Google Scholar 

  26. Puerta J, Martin P. Three and four generalized Lorentzian approximations for the Voigt line shape. Appl Optics. 1981;20(22):3923–8.

    Google Scholar 

  27. Cagliotti G, Paoletti A, Ricci FP. Choice of collimators for a crystal spectrometer for neutron diffraction. Nuclear Instrum Methods. 1958;3(3):223–8.

    Google Scholar 

  28. Rietveld HM. A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr. 1969;2(2):65–71.

    Google Scholar 

  29. Scherrer P. Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr Ges Wiss Göttingen, Math-Phys. Kl. 1918;2:98–100.

    Google Scholar 

  30. Seljkow N. Eine röntgenographische Methode zur Messung der absoluten Dimensionen einzelner Kristalle in Körpern von fein-kristallinischem Bau. Z. Physik. 1925;31(5–6):439–44.

    Google Scholar 

  31. James RW. The optical principles of the diffraction of X-rays. London: G. Bell & Sons Ltd.; 1954.

    Google Scholar 

  32. Warren BE, Averbach BL, Roberts BW. Atomic size effect in the X-ray scattering by alloys. J. Appl Phys. 1951;22(12):1493–6.

    Google Scholar 

  33. Williamson GK, Hall WH. X-ray line broadening from filed aluminium and wolfram. Act Metal. 1953;1(1):22–31.

    Google Scholar 

  34. Gusev AI, Rempel SV, X-ray diffraction study of the nanostructure resulting from decompo-sition of (ZrC)\(_{1-x}\)(NbC)\(_{x}\) solid solutions. Neorgan Mater. 2003;39(1):49–53. (in Russian) (Engl. Transl.: Inorg Mater. 2003;39(1):43–6).

    Google Scholar 

  35. Rempel SV, Gusev AI, Rempel AA, Method for determining the particle size in compacted and dispersed nanomaterials. In: Physical chemistry of ultradisperse (nano-) systems. Moscow: Moscow Institute of Engineering, Physics; 2003. p. 378–84. (in Russian).

    Google Scholar 

  36. Lebedev AV, Blagoveshchenskii YV, Moldaver VA. Creation of plasma-chemical equipment for manufacture of ultrafine powders of refractory metals and compounds. In: Physics and Chemistry of Ultradisperse Systems/Trans. 5th All-Russian Conf. (Yekaterinburg/Russia, October 9–13, 2000). Moscow: Moscow Engineering Physics Institute, 2000. p. 145–7. (in Russian).

    Google Scholar 

  37. Hall WH. X-ray line broadening in metals. Proc Phys Soc London. 1949. Sect. A;62, part 11(359A):741–3.

    Google Scholar 

  38. Hall WH, Williamson GK. The diffraction pattern of cold worked metals: I. The nature of extinction. Proc Phys Soc London. 1951; Sect. B:64, part 11(383):B.937–46.

    Google Scholar 

  39. Gusev AI, Nanocrystalline materials: synthesis and properties. In: Schwarz JA, Contescu C, Putyera K (editors). Dekker encyclopedia of nanoscience and nanotechnology (in 5 volumes). vol. 3. New York: Marcel Dekker Inc.; 2004. p. 2289–304.

    Google Scholar 

  40. Avvakumov EG, editor. Mechanical alloying in inorganic chemistry. Novosibirsk: Nauka; 1991. 305 pp. (in Russian).

    Google Scholar 

  41. Butyagin PYu. Problems in mechanochemistry and prospects for its development. Uspekhi Khimii. 1994;63(12):1031–1043. (in Russian) (Engl. Transl.: Russ Chem Reviews. 1994;63(12):965–76).

    Google Scholar 

  42. Balogh J, Bujdosó L, Faigel G, Gránásy L, Kemény T, Vincze I, Szabó S, Bakker H. Nucleation controlled transformation in ball milled FeB. Nanostruct Mater. 1993;2(1):11–8.

    Google Scholar 

  43. Teresiak A, Kubsch H. X-ray investigations of high energy ball milled transition metal carbides. Nanostruct Mater. 1995;6(5–8): 671–4.

    Google Scholar 

  44. Xueming MA, Gang JI. Nanostructured WC-Co alloy prepared by mechanical alloying. J Alloys Comp. 1996;245:L30–2.

    Google Scholar 

  45. Yavuz M, Maeda H, Vance L, Liu HK, Dou SX. Effect of ball milling materials and methods on powder processing of Bi2223 superconductors. Supercond Sci Techn. 1998;11(10):1153–9.

    Google Scholar 

  46. Coste S, Bertrand G, Coddet C, Gaffet E, Hahn H, Sieger H. High-energy ball milling of Al\(_{2}\)O\(_{3}\)-TiO\(_{2}\) powders. J Alloys Comp. 2007;434–435:489–92.

    Google Scholar 

  47. Venugopal T, Prasad Rao K, Murty BS. Synthesis of Cu-W nanocomposite by high-energy ball milling. J Nanosci Nanotech. 2007;7(7):2376–81.

    Google Scholar 

  48. Wang Y, Li Y, Rong, C, Liu PJ. Sm-Co hard magnetic nanoparticles prepared by surfactant-assisted ball milling. Nanotechnology. 2007;18(46):465701-1–465701-4.

    Google Scholar 

  49. Zhurkov SN, Narzulayev BN. Time dependence of the strength of solids. Zh Tekhn Fiz. 1953;23(10):1677–1689. (in Russian).

    Google Scholar 

  50. Regel’ VR, Slutsker AI, Tomashevskii EE. The kinetic nature of the strength of solids. Uspekhi Fiz. Nauk. 1972;106(2):193–228. (in Russian) (Engl. Transl.: Sov. Phys. Uspekhi 1972;15(1):45–65).

    Google Scholar 

  51. Yu BP. Mechanical disordering and reactivity of solids. In: Advances in mechanochemistry, physical and chemical processes under deformation. Harward Acad. Publ., 1998/Chemistry Reviews. 1998;23, Part 2: 91–165.

    Google Scholar 

  52. Putra IS, Suharto D (editors). Fracture and strength of solids VI (Proc. 6th Intern. Conf. on Fracture and Strength of Solids (FEOFS 2005), April 4–6, 2005, Bali, Indonesia). Key Eng. Mater. 2006;306–8. 1600 pp.

    Google Scholar 

  53. Sieradzki K. The fracture strength of solids near the percolation threshold. J Phys C: Solid State Phys. 1985:18(27):L855–6.

    Google Scholar 

  54. Fecht H-J. Nanostructure formation by mechanical attrition. Nanostruct. Mater. 1995;6(1–4):33–42.

    Google Scholar 

  55. Mohamed FA. A dislocation model for the minimum grain size obtainable by milling. Acta Materialia. 2003;51(14):4107–19.

    Google Scholar 

  56. Boiko VF, Verkhoturov AD. Model of grinding process of tungsten carbide. Perspektivnie Materialy. 2008;6:84–7 (in Russian).

    Google Scholar 

  57. Eckert J, Holzer JC, Krill CE, Johnson WL. Structural and thermodynamic properties of nanocrystalline fcc metals prepared by mechanical attrition. J Mater Res. 1992;7(7):1751–61.

    Google Scholar 

  58. Oleszak D, Shingu PH. Nanocrystalline metals prepared by low energy ball milling. J Appl Phys. 1996;79(6):2975–81.

    Google Scholar 

  59. Kurlov AS, Gusev AI. Effect of ball milling parameters on the particle size in nanocrystalline powders. Pis’ma v ZhTF. 2007;33(19):46–54. (in Russian) (Engl. Transl.: Technical Physics Letters. 2007;33(10):828–32).

    Google Scholar 

  60. Gusev AI, Kurlov AS. Production of nanocrystalline powders by high-energy ball milling: model and experiment. Nanotechnology. 2008;19(26). Paper 265302. P.265302-01–265302-08.

    Google Scholar 

  61. Gusev AI, Kurlov AS., Mechanical milling process modelling and making WC nanocrystalline powder. Neorgan Materialy. 2009;45(1):38–45. (in Russian) (Engl. Transl.: Inorganic Materials. 2009;45(1):35–42).

    Google Scholar 

  62. Kurlov AS, Gusev AI. Production of nanocrystalline powder of WC via ball-milling. In: Sigl LS, Rödhammer P, Wildner H (editors). 17 Plansee Seminar 2009: Proc. Intern. Conf. on High Performance P/M Materials (Reutte/Austria, May 25–29, 2009). Reutte, Austria: Plansee Group, 2009. V. 3. P.GT 24/1-GT24/11.

    Google Scholar 

  63. Kurlov AS, Gusev AI. Mathematical modeling of high-energy ball milling of powders. In: Zinigrad M (editor). Mathematical Modeling and Computer Simulation of Material Technologies/Proc. 6th Intern. Conf. MMT-2010 (Ariel, Israel, August 23–27, 2010). Ariel (Israel): Ariel University Center of Samaria, 2010. p. 1-105–1-113.

    Google Scholar 

  64. Kurlov AS, Gusev AI. Model for milling of powders. Zh Tekhn Fiz. 2011;81(7):76–82. (in Russian) (Engl. Transl.: Technical Physics. 2011;56(7):975–80).

    Google Scholar 

  65. Butyagin PYu, Streletskii AN. The kinetics and energy balance of mechanochemical transformations. Fiz Tverd Tela. 2005;47(5): C.830–5 (in Russian). (Engl. Transl.: Phys. Solid State. 2005;47(5):856–62).

    Google Scholar 

  66. Nazarov AA, Romanov AE, Valiev RZ. On the nature of high internal stresses in ultrafine grained materials. Nanostruct Mater. 1994;4(1):93–102.

    Google Scholar 

  67. Williamson GK, Smallman RE. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye-Scherrer spectrum. Phil Mag. 1956;1(1):34–46. (Series 8).

    Google Scholar 

  68. Butyagin PYu. Physical and chemical ways of a relaxation of elastic energy in solids. Mechanochemical reactions in two-component systems. In: Avvakumov EG (editor). Mechanical Alloying in Inorganic Chemistry. Novosibirsk: Nauka; 1991. p. 32–52 (in Russian).

    Google Scholar 

  69. Ya Kosolapova T. Properties, Production and application of refractory compounds handbook. Moscow: Metallurgiya; 1986. 928 pp. (in Russian).

    Google Scholar 

  70. Gubicza J, Ribárik G, Goren-Muginstein GR, Rosen AR, Ungár T. The density and the character of dislocations in cubic and hexagonal polycrystals determined by X-ray diffraction. Materials Sci Eng A. 2001;A309–A310:60–3.

    Google Scholar 

  71. Bolton JD, Redington M. Plastic deformation mechanisms in tungsten carbide. J Mater Sci. 1980;15(12)3150–6.

    Google Scholar 

  72. Wicks CE, Block FE. Thermodynamic properties of 65 elements, their oxides, halides, carbides and nitrides/Bulletin No 605. Washington: US Government Printing Office; 1963. p. 240.

    Google Scholar 

  73. Glushko, VP. Thermodynamic properties of individual substances (handbook in 4 vol.). Moscow: Nauka; 1979 II, book 2, 340 pp.; 1982 IV, book 2; 560 pp. (in Russian).

    Google Scholar 

  74. Barin I. Thermochemical data of pure substance, 3rd edn. Weinheim: VCH, 1995. 1880 pp.

    Google Scholar 

  75. Warren BE. X-ray diffraction. New York: Dower; 1990.

    Google Scholar 

  76. Schaefer H-E. Interfaces and physical properties of nanostructured solids. In: Nastasi MA, Parkin DM, Gleiter H (editor). Mechanical properties and deformation behavior of materials having ultrafine microstructure. Netherlands, Dordrecht: Kluwer Academic Press; 1993. p. 81–106.

    Google Scholar 

  77. Gusev AI, Nanocrystalline materials: preparation and properties. Ekaterinburg: Ural Division of the Russ. Acad. Sci., 1998. 200 pp. (in Russian).

    Google Scholar 

  78. Edelstein AS, Cammarata RC (editors). Nanomaterials: synthesis, properties and applications. Baltimor: The Johns Hopkins University; 1998. 620 pp.

    Google Scholar 

  79. Gleiter H. Nanostructured materials: basic concepts and microstructure. Acta Mater. 2000;48(1):1–29.

    Google Scholar 

  80. Löffler J, Weissmüller J, Gleiter H. Characterization of nanocrystalline palladium by X-ray atomic density distribution functions. Nanostruct Mater. 1995;6(5–8):567–70.

    Google Scholar 

  81. Weissmüller J, Löffler J, Kleber M. Atomic structure of nanocrystalline metals studied by diffraction techniques and EXAFS. Nanostruct Mater. 1995;6(1–4):105–14.

    Google Scholar 

  82. Haubold T, Birringer R, Lengeler B, Gleiter H. EXAFS studies of nanocrystalline materials exhibiting a new solid-state structure with randomly arranged atoms. Phys Lett A. 1989;135(8–9);461–466.

    Google Scholar 

  83. Rempel AA, Gusev AI. Magnetic susceptibility of palladium subjected to severe plastic deformation. Phys Stat Sol (b). 1996;196(1);251–60.

    Google Scholar 

  84. Rempel AA, Gusev AI, Mulyukov RR, Amirkhanov NM. Microstructure, microhardness and magnetic susceptibility of submicrocrystalline palladium. Nanostruct Mater. 1996;7(6):667–74.

    Google Scholar 

  85. Korznikov A, Dimitrov O, Korznikova G. Thermal evolution of the structure of ultrafine grained materials produced by severe plastic deformation. Ann Chim France. 1996;21(6–7):443–60.

    Google Scholar 

  86. Kizuka T, Nakagami Y, Ohata T, Kanazawa I, Ichinose H, Murakami H, Ishida Y. Structure and thermal-stability of nanocrystalline silver studied by transmission electron-microscopy and positron-annihilation spectroscopy. Philos Mag A. 1994;69(3):551–63.

    Google Scholar 

  87. Ishida Y, Ichinose H, Kizuka Y, Suenaga K. High-resolution electron microscopy of interfaces in nanocrystalline materials. Nanostruct Mater. 1995;6(1–4):115–24.

    Google Scholar 

  88. Klemm W, Schüth W. Magnetochemische Untersuchungen. 3. Über den Magnetismus einiger Carbide und Nitride. Z Anorg Allgem Chemie. 1931;201(1):24–31.

    Google Scholar 

  89. Kurlov AS, Nazarova SZ, Gusev AI, Magnetic susceptibility of tungsten carbide: relaxation and impurity effects. Pis’ma v ZhETF. 2005;82(8):567–72. (in Russian) (Engl. transl.: JETP Letters. 2005;82(8):509–14).

    Google Scholar 

  90. Kurlov AS, Nazarova SZ, Gusev AI, Magnetic susceptibility and thermal stability of nanocrystalline tungsten carbide. Doklady Akad. Nauk. 2005;405(2):218–23. (in Russian) (Engl. transl.: Dokl. Phys. Chem. 2005;405(1):229–34).

    Google Scholar 

  91. Kurlov AS, Nazarova SZ, Gusev AI, Magnetic susceptibility and thermal stability of particle size of nanocrystalline tungsten carbide WC. Fiz Tverd Tela. 2007;49(9):1697–703. (in Russian) (Engl. transl.: Phys Solid State. 2007;49(9):1780–6).

    Google Scholar 

  92. Rempel AA, Gusev AI, Nazarova SZ, Mulyukov RR. Extrinsic superparamagnetism in plastically deformed copper. Doklady Akad Nauk. 1996;347(6):750–4. (in Russian) (Engl. transl.: Physics - Doklady. 1996;41(4):152–6).

    Google Scholar 

  93. Rempel AA, Nazarova SZ. Magnetic properties of iron nanoparticles in submicrocrystalline copper. J Metastable Nanocrystal Mater. 1999;1:217–22.

    Google Scholar 

  94. Rempel AA, Nazarova SZ, Gusev AI. Iron nanoparticles in severe-plastic-deformed copper. J Nanoparticle Res. 1999;1(4):485–90.

    Google Scholar 

  95. Rempel AA, Nazarova SZ, Gusev AI. Magnetic properties and defects in palladium, titanium and copper after severe plastic deformation. In.: Burhanettin A (editor). Severe plastic deformation: towards bulk production of nanostructured materials. New York: Nova Science Publishers; 2006. p. 415–30.

    Google Scholar 

  96. Gusev AI, Nazarova SZ. Magnetic susceptibility of nonstoichiometric compounds of transition d-metals. Uspekhi Fiz. Nauk. 2005;175(7):681–704. (in Russian) (Engl. Transl.: Uspekhi-Physics. 2005;8(7):651–74).

    Google Scholar 

  97. Vonsovsky SV. Magnetism. (2 vols.). New York: Wiley; 1974. 1032 pp.

    Google Scholar 

  98. Selwood PW. Magnetochemistry. 2nd ed. New York: Interscience; 1956. 435 pp.

    Google Scholar 

  99. Mattheiss LF, Hamann DR. Bulk and surface electronic structure of hexagonal WC. Phys Rev B. 1984;30(4):1731–8.

    Google Scholar 

  100. Liu AY, Wentzcovitch RM, Cohen ML. Structural and electronic properties of WC. Phys Rev B. 1988;38(14):9483–8.

    Google Scholar 

  101. Kurlov AS, Gusev AI, Particle size effects on the oxidation of tungsten carbide powders. Zh Fiz Khimii. 2010;84(12):2291–7. (in Russian) (Engl. Transl. Russ. J. Phys. Chem. A. 2010;84(12):2095–101).

    Google Scholar 

  102. Kurlov AS, Gusev AI. Effect of particle size on the oxidation of WC powders during heating. Neorgan Materialy. 2011;47(2);173–8. (in Russian) (Engl. Transl.: Inorg Materials. 2011;47(2);133–8).

    Google Scholar 

  103. Kurlov AS, Gusev AI. Pecualirities of vacuum annealing of nanocrystalline WC powders. Int J Refr Met Hard Mater. 2012;32(5):.51-60.

    Google Scholar 

  104. Kurlov AS, Gusev AI. Vacuum annealing of nanocrystalline WC powders. Neorgan Materialy. 2012;48(7):781–91. (in Russian) (Engl. Transl.: Inorg Materials. 2012;48(7):680–90).

    Google Scholar 

  105. Kriessman CJ. The high-temperature magnetic susceptibility of V, Nb, Ta, W, and Mo. Rev. Modern Phys. 1953;25(1):122–6.

    Google Scholar 

  106. Asmussen RW, Potte-Jensen J. The magnetic properties of the elements molybdenum and tungsten. Acta Chem Scand. 1957;11(7):1271–2.

    Google Scholar 

  107. Kojima H, Tebble RS, Williams DEG. The variation with temperature of the magnetic susceptibility of some of transition elements. Proc R Soc A. 1961;A260(1301):237–50.

    Google Scholar 

  108. Kohlhaas R, Wunsch KM. Der Paramagnetismus der Übergangsmetalle Nb, Ta, Mo, W und Re als Funktion der Temperatur. Zeitschr Angew Physik. 1971;32(2):158–63.

    Google Scholar 

  109. Tammann G, Oelsen W. Die Abhängigkeit der Konzentration gesättigter Mischkristalle von der Temperatur. Ztschr Anorg Chemie. 1930;186(3):257–88.

    Google Scholar 

  110. Kittel C. Introduction to solid state physics. 7th ed. Brisbane: Wiley; 1996. 673 pp.

    Google Scholar 

  111. Newkirk AE. The oxidation of tungsten carbide. J Am Chem Soc. 1955;77(17):4521–2.

    Google Scholar 

  112. Webb WW, Norton JT, Wagner C. Oxidation studies in metal-carbon systems. J Electrochem Soc. 1956;103(2):112–7.

    Google Scholar 

  113. Dufour LC, Simon J. Cinetique d’oxidation sous faible pression d’oxygene d’echantillons pulverulents de monocarbures de zirconium et de tungstene et d’hemicarbure de molibdene. Bull Soc Chim France. 1968;9:3644–51.

    Google Scholar 

  114. Voitovich RF, Pugach EA. Features of high-temperature oxidation of transition metal carbides of VI groups. Poroshk Metallurgiya. 1973;4:59–64. (in Russian). (Engl. Transl.: Powder Metallurgy Met Ceram. 1973;12(4):314–8).

    Google Scholar 

  115. Voitovich VB, Sverdel VV, Voitovich RF, Golovko EI. Oxidation of WC-Co, WC-Ni and WC-Co-Ni hard metals in the temperature range 500–800\(^{\circ }\)C. Intern J Refr Met Hard Mater. 1996;14(4);289–95.

    Google Scholar 

  116. Ribeiro CA, Souza WR, Crespi MS, Gomes Neto JA, Fertonani FL. Non-isothermal kinetic of oxidation of tungsten carbide. J Therm Anal Calorimetry. 2007;90(3):801–5.

    Google Scholar 

  117. Voitovich RF. Oxidation of carbides and nitrides. Kiev: Naukova Dumka; 1981. 192 pp. (in Russian).

    Google Scholar 

  118. Kurlov AS, Rempel AA. Effect of WC nanoparticle size on the sintering temperature, density, and microhardness of WC-8 wt.% Co alloys. Neorgan Materialy. 2009;45(4):428–433. (in Russian) (Engl. Transl.: Inorg Materials. 2009;45(4):380–5).

    Google Scholar 

  119. Kehl WL, Hay RG, Wahl D. The structure of tetragonal tungsten trioxide. J Appl Phys. 1952;23(2):212–4.

    Google Scholar 

  120. Salje E. The orthorhombic phase of WO\(_{3}\). Acta Crystallogr. B. 1977;33(2):574–7.

    Google Scholar 

  121. Woodward PM, Sleight AW, Vogt T. Ferroelectric tungsten trioxide. J. Solid State Chem. 1997;131(1):9–17.

    Google Scholar 

  122. Diehl R, Brandt G, Salje E. The crystal structure of triclinic WO\(_{3}\). Acta Crystallogr. B. 1978;B34(4):1105–11.

    Google Scholar 

  123. Salje EKH, Rehmann S, Pobell I, Morris D, Knight KS, Herrmannsdörfer T, Dove MT. Crystal structure and paramagnetic behaviour of \(\varepsilon \)-WO\(_{3-x}\). J Phys: Condens Matter. 1997;9(31):6563–77.

    Google Scholar 

  124. Airdy A, Domeneghetti MC, Mazzi F, Tazzoli V, Salje EKH. Sheet superconductivity in WO\(_{3-x}\): crystal structure of the tetragonal matrix. J Phys: Condens Matter. 1998;10(33):L569–74.

    Google Scholar 

  125. Woodward PM, Sleight AW, Vogt T. Structure refinement of triclinic tungsten trioxide. J Phys Chem Solids. 1995;56(10):1305–15.

    Google Scholar 

  126. Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal 1970;2(3):301–24.

    Google Scholar 

  127. Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12(3):150–8.

    Google Scholar 

  128. Šesták J. Thermophysical properties of solids, their measurements and theoretical thermal analysis. Amsterdam: Elsevier; 1984, 440 pp.

    Google Scholar 

  129. Málek J, Šesták J, Rouquerol F, Rouquerol J, Criado JM, Ortega A. Possibilities of two non-isotermal procedures (temperature- or rate-controlled) for kinetical studies. J Therm Anal. 1992;38(1–2):71–87.

    Google Scholar 

  130. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1959;29(10):1702–7.

    Google Scholar 

  131. Freeman ES, Carroll B. The application of thermoanalytical techniques to reaction kinetics: the thermogravimetric evaluation of the kinetics of the decomposition of calcium oxalate monohydrate. J Phys Chem. 1958;62(4):394–7.

    Google Scholar 

  132. Criado JM, Ortega A. Non-isothermal transformation kinetics: remarks on the Kissinger method. J Non-Cryst Solids. 1986;87(3):302–11.

    Google Scholar 

  133. Criado JM, Málek J, Ortega A. Applicability of the master plots in kinetic analysis of non-isothermal data. Thermochim Acta. 1989;147(2):377–85.

    Google Scholar 

  134. Málek J. A computer program for kinetic analysis of non-isothermal thermoanalytical data. Thermochim Acta. 1989;138(2):337–46.

    Google Scholar 

  135. Šesták J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3(1):1–12.

    Google Scholar 

  136. Berger S, Porat R, Rosen R. Nanocrystalline materials: a study of WC-based hard metals. Progr Mater Sci. 1997;42(1–4):311–20.

    Google Scholar 

  137. McCandlish LE, Kear BH, Kim BK. Processing and properties of nanostructured WC-Co. Nanostruct Mater. 1992;1(1):119–24.

    Google Scholar 

  138. Milman YuV, Chugunova S, Goncharuck V, Luyckx S, Northrop IT. Low and high temperature hardness of WC-6 wt.% Co alloys. Int J Refr Met Hard Mater. 1997;15(1–3):97-101.

    Google Scholar 

  139. Kurlov AS, Gusev AI, Rempel AA. Vacuum sintering of WC - 8 wt.% Co hardmetals from WC powders with different dispersity. Int J Refr Met Hard Mater. 2011;29(2):221–31.

    Google Scholar 

  140. Rempel AA. Nanotechnologies. Properties and applications of nanostructured materials. Uspekhi Khimii. 2007;76(5):474–500. (in Russian) (Engl. Transl.: Russian Chem Reviews. 2007;76(5):435–61).

    Google Scholar 

  141. Tsvetkov YV, Panfilov SA. Low-temperature plasma in reduction processes. Moscow: Nauka, 1980. 360 pp. (in Russian).

    Google Scholar 

  142. Kurlov AS, Rempel AA. Effect of sintering temperature on the phase composition and microhardness of WC-8 wt % Co cemented carbide. Neorgan Materialy. 2007;43(6):685–91. (in Russian) (Engl. Transl: Inorganic Materials. 2007;43(6):602–7).

    Google Scholar 

  143. Krasovskii PV, Blagoveshchenskii YV, Grigorovich KV, Determination of oxygen in W-C-Co nanopowders. Neorgan Materialy. 2008;44(9):1074–9. (in Russian) (Engl. Transl.: Inorganic Materials. 2008;44(9):954–9).

    Google Scholar 

  144. Ribeiro FH, Dalla Betta RA, Guskey GJ, Boudart M. Preparation and surface composition of tungsten carbide powders with high specific surface area. Chem Mater. 1991;3(5):805–12.

    Google Scholar 

  145. Kurlov AS. Effect of vacuum annealing on the particle size and phase composition of nanocrystalline WC powders. Zh Fiz Khimii. 2013;87(42):664–71. (in Russian) (Engl. Transl.: Russ J Phys Chem A. 2013;87:4:654–61).

    Google Scholar 

  146. Kurlov AS, Gusev AI. Phase equilibria in the W - C system and tungsten carbides. Uspekhi Khimii. 2006;75(7):687–708. (in Russian) (Engl. Transl.: Russian Chem Reviews. 2006;75(7):617–36).

    Google Scholar 

  147. Kurlov AS, Gusev AI. Neutron and X-ray diffraction study and symmetry analysis of phase transformations in lower tungsten carbide W\(_{2}\)C. Phys Rev B. 2007;76(17). Paper 174115. P.174115-01–174115–16.

    Google Scholar 

  148. Warren A, Nylund A, Olefjord I. Oxidation of tungsten and tungsten carbide in dry and humid atmosphere. Int J Refr Met Hard Mater. 1996;14(5–6):345–53.

    Google Scholar 

  149. Brillo J, Kuhlenbeck H, Freund H-J. Interaction of O\(_{2}\) with WC (0001). Surface Science. 1998;409:199–206.

    Google Scholar 

  150. Kurlov AS, Gusev AI, Tungsten carbides and W - C phase diagram. Neorgan Materialy. 2006;42(2):156–63. (in Russian) (Engl. Transl.: Inorganic Materials. 2006;42(2):121–7).

    Google Scholar 

  151. Hoch M, Blackburn PE, Dingledy DP, Johnston HL. The heat of sublimation of carbon. J Phys Chem. 1955;59(2):97–9.

    Google Scholar 

  152. Bolgar AS, Turchanin AG, Fesenko VV. Thermodynamic properties of carbides. Kiev: Naukova Dumka; 1973. p. 170–1. (in Russian).

    Google Scholar 

  153. Kulikov IS. Thermodynamics of carbides and nitrides. Chelyabinsk: Metallurgiya; 1988. 320 pp. (in Russian).

    Google Scholar 

  154. Rempel AA, Gusev AI, Nanostructure and atomic ordering in vanadium carbide. Pis’ma v ZhETF. 1999;69(6):436–42. (in Russian) (Engl. Transl.: JETP Letters. 1999;69(6):472–8).

    Google Scholar 

  155. Levinsky YV, Blagoveshchensky YV, Vol’dman GM, Mel’nik YI. Mechanism of enlarging the nanoparticles of niobium, molybdenum, and tungsten during annealing in vacuum and hydrogen. Materialovedenie. 2006;10:38–47. (in Russian).

    Google Scholar 

  156. Klyachko LI, Fal’kovskii VA, Khokhlov AM, Hard alloys based on tungsten carbide with fine structure. Moscow: Ruda i, Metally; 1999. 48 pp. (in Russian).

    Google Scholar 

  157. Korolev YM, Polukarov YM, Zanozin VM. Decarburization of tungsten carbide during electrochemical application of cobalt coatings in aqueous solutions. Poroshk Metallurgiya. 1992;6:20–3. (in Russian) (Engl. transl.: Powder Metallurgy Met Ceram. 1992;31(4):476–9).

    Google Scholar 

  158. Blagoveshchensky YV, Isaeva NV, Mel’nik YI, Blagoveshchenskaya NV. Sintering of nanostructured hard alloys. In: Nano-2011/Trans. 4th All-Russian Conf. on Nanomaterials (Moscow, March 1–4, 2011). Moscow: Institute of Metallurgy and Materials Science of the Russian Academy of Sciences, 2011. p. 15. (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey S Kurlov .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kurlov, A.S., Gusev, A.I. (2013). Nanocrystalline Tungsten Carbide. In: Tungsten Carbides. Springer Series in Materials Science, vol 184. Springer, Cham. https://doi.org/10.1007/978-3-319-00524-9_4

Download citation

Publish with us

Policies and ethics