Skip to main content

Phases and Equilibria in the W–C and W–Co–C Systems

  • Chapter
  • First Online:
Tungsten Carbides

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 184))

Abstract

The results of literature experimental and theoretical investigations of phase equilibria in the W–C system and of the crystal and electronic structures of WC, \(\mathrm{{WC}}_{1-x}\), and \(\mathrm{{W}}_{2}\mathrm{{C}}\) tungsten carbides are generalized. The sequence of possible phase transformations associated with ordering of lower hexagonal carbide \(\mathrm{{W}}_{2}\mathrm{{C}}\) is discussed preliminary. The generalized information on the phase equilibria in the ternary system W–Co–C, which is the basis for the synthesis of hardmetals WC–Co, is given. Methods of synthesis of tungsten carbides and WC–Co hardmetals are considered. Modern methods for the preparing nanocrystalline WC tungsten carbide and nanostructured hard alloys are discussed as well as their structures and properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gusev AI, Rempel AA. Structural phase transitions in nonstoichiometric compounds. Moscow: Nauka; 1988. p. 308 (in Russian).

    Google Scholar 

  2. Gusev AI. Physical chemistry of nonstoichiometric refractory compounds. Moscow: Nauka; 1991. p. 286 (in Russian).

    Google Scholar 

  3. Gusev AI., Rempel AA. Nonstoichiometry, disorder and order in solids. Ekaterinburg: Ural Division of the Russian Academy of Sciences; 2001. p. 580 (in Russian).

    Google Scholar 

  4. Gusev AI, Rempel AA, Magerl AJ. Disorder and order in strongly nonstoichiometric compounds: transition metal carbides, nitrides and oxides. Berlin: Springer; 2001. p. 607.

    Google Scholar 

  5. Gusev AI. Nonstoichiometry, disorder, short-range and long-range order in solids. Moscow: Nauka-Fizmatlit; 2007. p. 856 (in Russian).

    Google Scholar 

  6. Gubanov VA, Ivanovsky AL, Zhukov VP. Electronic structure of refractory carbides and nitrides. Cambridge: Cambridge University Press; 1994. p. 256.

    Google Scholar 

  7. Goldschmidt HJ. Interstitial alloys. New York: Plenum Press; 1967.

    Google Scholar 

  8. Kotel’nikov RB, Bashlykov SN, Galiakbarov ZG, Kashtanov AI. Fundamentals of refractory elements and compounds/handbook. Moscow: Metallurgiya; 1969. p. 376 (in Russian).

    Google Scholar 

  9. Storms EK. The refractory carbides. New York: Academic Press; 1967.

    Google Scholar 

  10. Toth LE. Transition metal carbides and nitrides. New York: Academic Press; 1971.

    Google Scholar 

  11. Andrievski RA, Lanin AG, Rymashevskii GA. Strength of high-melting compounds. Moscow: Metallurgiya; 1974. p. 232 (in Russian).

    Google Scholar 

  12. Holleck H. Binäre und Ternäre Carbid- und Nitridsysteme der Übergangsmetalle. Berlin–Stuttgart: Gebrüder Borntraeger; 1984. p. 295SS.

    Google Scholar 

  13. Hägg G. Gezetsmässigkeiten im Kristallbau bei Hydriden, Boriden, Karbiden und Nitriden der Übergangselemente. Zeitschr Phys Chem 1931;12(1):33–56.

    Google Scholar 

  14. Moissan H. Preparation au four électrique de quelques mètaux réfractaires: tungstène, molybdène, vanadium. Compt Rend. 1893;116:1225–27.

    Google Scholar 

  15. Schrüter K. The inception and development of hard metal carbides. The Iron Age. 1934;133(2):27–9.

    Google Scholar 

  16. C-W (carbon–tungsten). In: Massalski TB, Murray JL, Bennet LH, Baker H, Kasprzak L, editors. Binary alloy phase diagrams. Vol 1. Metals Park (Ohio): ASM Internship Publications; 1987. p. 599–600.

    Google Scholar 

  17. C-W (carbon–tungsten). In: Massalski TB, Subramanian PR, Okamoto H, Kasprzak L, editors. Binary alloy phase diagrams. 2nd ed., Vol 1. Metals Park (Ohio): ASM Internship Publications; 1990. p. 895–896.

    Google Scholar 

  18. Rudy E, Windisch S. Evidence to zeta Fe\(_{2}\)N-type sublattice order in W\(_{2}\)C at intermediate temperatures. J Am Ceram Soc. 1967;50(5):272–3.

    Google Scholar 

  19. Rudy E, Windisch S, Hoffman JR In: Ternary phase equilibria in transition metal-boron-carbon-silicon systems (Part I. Related Binary Systems. Vol VI). USAF Technical Document Report AFML-TR-65-2. Wright-Patterson Air Force Base (Ohio): Metals and Ceramics Division, Air Force Materials Laboratory; 1966. p. 1–50.

    Google Scholar 

  20. Rudy E. Compendium of phase diagram data. Ternary phase equilibria in transition metal-boron-carbon-silicon systems (Part V). Final Technical Report AFML TR-65-2. Wright-Patterson Air Force Base (Ohio): Metals and Ceramics Division, Air Force Materials Laboratory; 1969. p. 735.

    Google Scholar 

  21. Rudy E, Hoffman JR Phasengleichgewichte im Bereich der kubischen Karbidphase im System Wolfram-Kohlenstoff. Planseeber. Pulvermet. 1967;15(3):174–8.

    Google Scholar 

  22. Sara RV. Phase equilibrium in the system tungsten–carbon. J Am Ceram Soc. 1965;48(5):251–7.

    Google Scholar 

  23. C-W. In: McHale AE, editor. Phase equilibria diagrams. Phase diagrams for ceramists. Vol X. Westerville (Ohio): American Ceramic Society Publications; 1994. p. 272–273.

    Google Scholar 

  24. C-W (carbon–tungsten). In: Lyakishev NP, editor. Phase diagrams of the binary metal systems/handbook. Vol 1. Moscow: Mashinostroenie; 1996. p. 778–779 (in Russian).

    Google Scholar 

  25. Yvon K, Nowotny H, Benesovsky F. Zur Kristallstruktur von W\(_{2}\)C. Monatsh. Chemie. 1968;99(2):726–9.

    Google Scholar 

  26. Harsta A, Rundqvist S, Thomas JO. A neutron powder diffraction study of W\(_{2}\)C. Acta Chem Scand A. 1978;32A(9):891–2.

    Google Scholar 

  27. Lönnberg B, Lundström T, Tellgren R. A neutron powder diffraction study of Ta\(_{2}\)C and W\(_{2}\)C. J Less-Common Met. 1986;120(2):239–45.

    Google Scholar 

  28. Epicier T, Dubois J, Esnouf C, Fantozzi G. Identification de la phase \(\beta \)-W\(_{2}\)C, type \(\varepsilon \)-Fe\(_{2}\)N dans l’hémicarbure de tungsten. Compt Rend Acad Sci Paris Ser II. 1983;297(3):215–18.

    Google Scholar 

  29. Epicier T, Dubois J, Esnouf C, Fantozzi G, Convert P. Neutron powder diffraction studies of transition metal hemicarbides M\(_{2}\)C\(_{1-x}\). II. In situ high temperature study of W\(_{2}\)C\(_{1-x}\) and Mo\(_{2}\)C\(_{1-x}\). Acta Metall. 1988;36(8):1903–21.

    Google Scholar 

  30. Lander JJ, Germer LH. Plating molybdenum, tungsten, and chromium by thermal decomposition of their carbonyls. Trans AIME. 1948;175:661–92.

    Google Scholar 

  31. Lautz G, Schneider D. Über die Supraleitung in den Wolframkarbiden W\(_{2}\)C und WC. Zeitschr. Naturforsch. A. 1961;16A(12):1368–72.

    Google Scholar 

  32. Goldschmidt HJ, Brand JA. The tungsten-rich region of the system tungsten–carbon. J Less-Common Met. 1963;5(2):181–94.

    Google Scholar 

  33. Parthe E, Sadagopan V. The structure of dimolybdenum carbide by neutron diffraction technique. Acta Crystallogr. 1963;16(3):202–05.

    Google Scholar 

  34. Butorina LN, Pinsker ZG. Electron diffraction study of W\(_{2}\)C. Kristallografiya. 1960;5(4):585–588 (in Russian) (English Translation: Sov Phys Crystallogr. 1960;5(4):560–62).

    Google Scholar 

  35. Heetderks HD, Rudy E, Eckert T. Differential thermal analysis apparatus for high temperatures. High temperature phase reactions in refractory carbide systems. Planseeber. Pulvermet. 1965;13(2):104–25.

    Google Scholar 

  36. Ronsheim P, Toth LE, Mazza A, Pfender E, Mitrofanov B. Direct current arc-plasma synthesis of tungsten carbides. J Mater Sci. 1981;16(10):2665–74.

    Google Scholar 

  37. Willens RH, Buehler E. The superconductivity of the monocarbides of tungsten and and molybdenum. Appl Phys Lett. 1965;7(1):25–6.

    Google Scholar 

  38. Willens RH, Buehler E, Matthias BT. Superconductivity of the transition-metal carbides. Phys Rev. 1967;159(2):327–30.

    Google Scholar 

  39. Krainer E, Robitsch J. Röntgenographischer Nachweis des kubischen Wolframkarbides in funkenerosiv bearbeiteten Hartmetallen und in reinen Wolframschmelkarbiden. Planseeber. Pulvermet. 1967;15(1):46–56.

    Google Scholar 

  40. Gromilov SA, Kinelovskii SA. X-ray investigation of tungsten carbides synthesized by cumulative explosion. Zh Struct Khimii. 2003;44(3):486–93 (in Russian) (English Translation. J Struct Chem. 2003;44(3):434–40).

    Google Scholar 

  41. Vonsovskii SV, Izyumov YA, Kurmaev EZ. Superconductivity of transition metals, their alloys and compounds. Moscow: Nauka; 1977. p. 384 (in Russian).

    Google Scholar 

  42. Krainer E, Robitsch J. Zur Frage des kubischen Wolframkarbids. Planseeber. Pulvermet. 1967;15(3):179–80.

    Google Scholar 

  43. Kurlov AS, Gusev AI. Tungsten carbides and W-C phase diagram. Neorgan. Materialy. 2006; 42(2):156–163. (in Russian) (English Translation. Inorg Mater. 2006;42(2):121–7.

    Google Scholar 

  44. Butorina LN. An electron diffraction study of the tungsten carbide WC. Kristallografiya. 1960;5(2): 233–7 ( in Russian) (English Translation: Sov Phys Crystallogr. 1960;5(2):216–20).

    Google Scholar 

  45. Liu AY, Wentzcovitch RM, Cohen ML. Structural and electronic properties of WC. Phys Rev B. 1988;38(14):9483–8.

    Google Scholar 

  46. Rempel AA, Würschum R, Schaefer H-E. Atomic defects in hexagonal tungsten carbide studied by positron annihilation. Phys Rev B. 2000;61(9):5945–8.

    Google Scholar 

  47. Rempel AA., Schaefer H-E, Forster M, Girka AI. Atomic defects in transition metal carbides and SiC studied by positron annihilation. In: Barron AR, Fischman GS, Fury MA, Hepp AF, editors. Proceedings of the materials research society symposium. Vol 327 ( Covalent ceramics II: non-oxides). Symposium held November 29–December 2, 1993, Boston, Massachusetts, USA. Pittsburgh (Pennsylvania): Materials Research Society; 1994. p. 301–4.

    Google Scholar 

  48. Puska MJ, Šob M, Brauer G, Korhonen T. Positron annihilation characteristics in perfect and imperfect transition metal carbides and nitrides. J Physique IV. 1995;5(1):C1-135–42.

    Google Scholar 

  49. Rudy E, Windisch S, Chang YA. Mo- C system. In: Ternary phase equilibria in transition metal-boron-carbon-silicon systems (Part I. Related Binary Systems. Vol I). USAF Technical Document Report AFML-TR-65-2. Wright-Patterson Air Force Base (Ohio): Metals and Ceramics Division, Air Force Materials Laboratory; 1965. p. 1–164.

    Google Scholar 

  50. Rudy E, Windisch S, Stosick AJ, Hoffman JR. The constitution of binary molybdenum—carbon alloys. Trans AIME. 1967;239(8):1247–67.

    Google Scholar 

  51. Kurlov AS, Gusev AI. Phase equilibria in the W-C system and tungsten carbides. Uspekhi Khimii. 2006;75(7):687–708 (in Russian) (English Translation: Russ Chem Rev. 2006;75(7):617–36).

    Google Scholar 

  52. Rautala P, Norton JT. Tungsten-cobalt-carbon system. Trans AIME. 1952;194(4):1045–50.

    Google Scholar 

  53. Gurland J. A study of the effect of carbon content on the structure and properties of sintered WC- Co alloys. Trans AIME. 1954;200(3):285–90.

    Google Scholar 

  54. Pollock CB, Stadelmaier HH. The eta carbides in the Fe-W-C and Co-W-C systems. Metall Trans. 1970;1(4):767–70.

    Google Scholar 

  55. Ramhath V, Jayaraman N. Quantitative phase analysis by X-ray diffraction in Co-W-C system. J Mater Sci Lett. 1987;6(12):1414–8.

    Google Scholar 

  56. Ettmayer P, Suchentrunk R. Über die thermische Stabilität der Eta-Carbide. Monatsch Chemie. 1970;101(4):1098–1103.

    Google Scholar 

  57. Johansson T, Uhrenius B. Phase equilibria, isothermal reactions, and a thermodynamic study in the Co-W-C system at 1150 \(^\circ \) C. Metal Sci. 1978;12(1):83–94.

    Google Scholar 

  58. Adelsköld V, Sundelin A, Westgren A. Carbide in kohlenstoffhaltigen Legierungen von Wolfram und Molybdän mit Chrom, Mangan, Eisen, Kobalt und Nickel. Zeitschr Anorg Allgem Chemie. 1933;212(4):401–9.

    Google Scholar 

  59. Schönberg N. The structure of the Co\(_{3}\)W\(_{9}\)C\(_{4}\) phase. Acta Metall. 1954;2(6):837–40.

    Google Scholar 

  60. Harsta A, Johansson T, Rundqvist N, Thomas JO. A neutron powder diffraction study of the \(\kappa \)-phase in the Co-W-C system. Acta Chem Scand A. 1977;31A(4):260–4.

    Google Scholar 

  61. Guillermet AF. Thermodynamic properties of the Co-W-C system. Metall Trans AIME A. 1989;20A(5):935–56.

    Google Scholar 

  62. Kaufman L, Bernstein H. Computer calculation of phase diagrams. New York: Academic Press; 1970. p. 344.

    Google Scholar 

  63. Sundman B, Ansara I, Hillert M, Inden G, Lukas H-L, Kumar KCH. Contributions to the thermodynamic modelling of solution. Zeitschr Metallkunde. 2001;92(6):526–32.

    Google Scholar 

  64. Villars P, Prince A, Okamoto H, Handbook of ternary alloy phase diagrams. Vol 5. Metals Park (Ohio): ASM Publication; 1995. p. 6585–605.

    Google Scholar 

  65. Alekseev ES, Arkhipov PG, Popova SV. Band structure of hexagonal tungsten carbide. Phys Status Solidi (b). 1982;110(2):K151–4.

    Google Scholar 

  66. Mattheiss LF, Hamann DR. Bulk and surface electronic structure of hexagonal WC. Phys Rev B. 1984;30(4):1731–8.

    Google Scholar 

  67. Zhukov VP, Gubanov VA. Energy band structure and thermo-mechanical properties of tungsten and tungsten carbides as studied by the LMTO-ASA method. Solid State Commun. 1985;56(1):51–5.

    Google Scholar 

  68. Zhukov VP, Gubanov VA, Jarlborg T. Study of energy-band structures, some thermo-mechanical properties and chemical bonding for a number of refractory metal carbides by the LMTO-ASA method. J Phys Chem Solids. 1985;46(10):1111–6.

    Google Scholar 

  69. Zhukov VP, Gubanov VA. Study of the energy-band structure and chemical-bond in ZrC, NbC, and WC by the LMTO-ASA method. Izv AN SSSR Neorgan Materialy. 1986;22(10):1665–71 (in Russian) (English Translation: Inorg Mater. 1986;22(10):1458–63).

    Google Scholar 

  70. Matthias BT, Hulm JK. A search for new superconducting compounds. Phys Rev. 1952;87(5):799–806.

    Google Scholar 

  71. Medvedeva NI, Ivanovskii AL. Effect of metal and carbon vacancies on the band structure of hexagonal tungsten carbide. Fiz Tverd Tela. 2001;43(3):452–5 (in Russian) (English Translation. Phys Solid State. 2001;43(3):469–72).

    Google Scholar 

  72. Suetin DV, Shein IR, Kurlov AS, Gusev AI, Ivanovskii AL. Band structure and properties of polymorphic modifications of lower tungsten carbide W\(_{2}\)C. Fiz Tverd Tela. 2008;50(8):1366–72 (in Russian) (English Translation. Phys Solid State. 2008;50(8):1420–6).

    Google Scholar 

  73. Weimer AW, editor. Carbide, nitride and boride materials synthesis and processing. London: Chapman and Hall; 1997. p. 671.

    Google Scholar 

  74. Gogotsi YG, Andrievski RA, editors. Materials science of carbides, nitrides and borides. Dordrecht: Kluwer Academic Publishers; 1999. p. 360.

    Google Scholar 

  75. Berger L-M, Hermann M, Gusev AI, Rempel AA. Verfahren zur Herstellung nichtstöchiometrischer Carbide definierter Zusammensetzung Offenlegungsshrift DE 198 07 589 A 1. Int. Cl.\(^{6}\): C 01 B 31/30 (C 04 B 35/36). Bundesrepublik Deutschland: Deutsches Patentamt (Anmeldetag 23.02.1998, Offenlegungstag 10.09.1998.), 1998. p. 3.

    Google Scholar 

  76. Bondarenko VP, Pavlotskaya EG. High-temperature synthesis of tungsten carbide in a methane-hydrogen gas medium. Poroshk Metallurgiya. 1995;34(9–10):21–6 (in Russian) (English Translation: Powder Metall Met Ceram. 1995;34(9–10). p. 508–12).

    Google Scholar 

  77. Kuznetsov NT. Precursors for carbide, nitride and boride synthesis. In: Gogotsi YG, Andrievski RA, editors. Materials science of carbides, nitrides and borides. Dordrecht: Kluwer Academic Publishers; 1999. p. 223–46.

    Google Scholar 

  78. Avvakumov EG, editor. Mechanical alloying in inorganic chemistry. Novosibirsk: Nauka; 1991. p. 305 (in Russian).

    Google Scholar 

  79. Davydkin VY, Trusov LI, Butyagin PY, Moskvin VV, Kolbanev IV, Novikov VI, Plotkin SS. Structure of refractory carbides synthesized by mechanochemical method. In: Avvakumov EG, editor. Mechanical alloying in inorganic chemistry.Novosibirsk: Nauka; 1991:183–5 (in Russian).

    Google Scholar 

  80. Baikalova YV, Lomovsky OI. Solid state synthesis of tungsten carbide in an inert copper matrix. J Alloys Comp. 2000;297(1). p. 87–91.

    Google Scholar 

  81. Westbrook JH, Stover ER. Carbides for high-temperature materials. In: Campbell IE, Sherwood EM, editors. High-temperature materials and technology. New York: Wiley;1967:312–48.

    Google Scholar 

  82. Kovalchenko MS, Dzhemelinskii VV, Skuratovskii VN, Tkachenko YG, Yurchhenko DZ, Alekseev VI. Microhardness of some carbides at various temperatures. Poroshk Metallurgiya. 1971;10(8):87–91 (in Russian) (English Translation: Powder Metall Met Ceram. 1971;10(8):665–8).

    Google Scholar 

  83. Atkins AG, Tabor D. Hardness and deformation properties of solids at very high temperatures. Proc Roy Soc Lond. 1966;292(1431):441–59.

    Google Scholar 

  84. Samsonov GV, Vitryanuk VK, Chaplygin FI. Tungsten carbides. Kiev: Naukova Dumka; 1974. p. 176 (in Russian).

    Google Scholar 

  85. Kieffer R, Benesovsky F. Hartmetalle. Wien-New York: Springer; 1965. p. S541.

    Google Scholar 

  86. Romanova NI, Chekulaev PG, Dusev VI, Livshits TA, Kurdov MN. Cermet hard alloys. Moscow: Metallurgiya; 1970:144–74 (in Russian).

    Google Scholar 

  87. Loshak MG. Strength and operating life of hard alloys. Kiev: Naukova Dumla; 1984. p. 328 (in Russian).

    Google Scholar 

  88. Emelyanova TA, Kobitskaya NB, Gorbacheva TB. Kinetics of wet grinding of submicron tungsten-carbide powder. Metally. 1992;(1):75–80 (in Russian) (English Translation. Russ Metall. 1992;(1):64–8).

    Google Scholar 

  89. Gusev AI. Nanocrystalline materials: preparation and properties. Ekaterinburg: Ural Division of the Russian Academy of Science; 1998. p. 200 (in Russian).

    Google Scholar 

  90. Gusev AI, Rempel AA. Nanocrystalline materials. Moscow: Nauka-Fizmatlit; 2000. p. 224 (in Russian).

    Google Scholar 

  91. Gusev AI, Rempel AA. Nanocrysnalline materials. Cambridge: Cambridge Internship Science Publications; 2004. p. 351.

    Google Scholar 

  92. Gusev AI. Nanomaterials, nanostructures, and nanotechnologies. 2nd ed. Moscow: Nauka-Fizmatlit; 2007. p. 416 (in Russian).

    Google Scholar 

  93. Valiev RZ, Aleksandrov IV. Nanostructured materials obtained by severe plastic deformation. Moscow. Logos; 2000. p. 272 (in Russian).

    Google Scholar 

  94. Gusev AI. Effects of the nanocrystalline state in solids. Uspekhi Fiz Nauk. 1998;168(1):55–83 (in Russian) (English Translation: Phys Uspekhi. 1998;41(1):49–76).

    Google Scholar 

  95. Gusev AI. Nanocrystalline materials: synthesis and properties. In: Schwarz JA, Contescu C, Putyera K, editors. Dekker encyclopedia of nanoscience and nanotechnology, in 5 volumes. Vol 3. New York: Marcel Dekker Inc.; 2004:2289–304.

    Google Scholar 

  96. Berger S, Porat R, Rosen R. Nanocrystalline materials: a study of WC-based hard metals. Prog Mater Sci. 1997;42(1–4):311–20.

    Google Scholar 

  97. Gusev AI, Kurlov AS. Hardmetals today and tomorrow. Metally Evrazii. 2005;(2):42–45 (in Russian).

    Google Scholar 

  98. Scussel HJ. Friction and wear of cemented carbides. In: Metals handbook (ASM) 10th edition in 23 volumes, 1990–1997/friction, lubrication and wear technology (ASM Handbook, Vol 18). Vol 18. Metals Park (Ohio): ASM Internship Publications; 1992:795–6.

    Google Scholar 

  99. Daub HW, Dreyer K, Happe A, Holzhauer H, Kassel D. Leistungspotentiale von Feinst- und Ultrafeinstkorn-Hartmetallen und Herstellung/Pulvermetallurgie in Wissenschaft und Praxis. Bd.11. Ed. H. Kolaska. Oberursel: DGM Informationsgesellschaft Verlag, 1995. p. 285–306.

    Google Scholar 

  100. Va\(\beta \)en R., Stöver D. Processing and properties of nanophase ceramics. J Mater Process Technol. 1999;92–93:77–84.

    Google Scholar 

  101. Schubert WD, Bock A, Lux B. General aspects and limits of conventional ultrafine WC powder manufacture and hard metal production. In: Bildstein H, Eck R, editors. Proceedings of the 13th Internship on Plansee Seminar. Reutte: Metallwerk Plansee, 1993;4:283–305.

    Google Scholar 

  102. Miller TN. Plasmochemical synthesis and properties of powders of high-melting compounds. Izv AN SSSR Neorgan Materialy. 1979;15(4):557–62 (in Russian) (English Translation. Inorg Mater. 1979;15(2):476–80).

    Google Scholar 

  103. Kosolapova TY, Makarenko GN, Zyatkevich DP. Plasmochemical synthesis of high-melting compounds. Zh Vsesouzn Khimichesk Obschestva. 1979;24(3):228–33 (in Russian).

    Google Scholar 

  104. Kear BH, Strutt PR. Chemical processing and applications for nanostructured materials. Nanostruct. Mater. 1995;6(1–4):227–36.

    Google Scholar 

  105. Blinkov IV, Ivanov AV, Orekhov IE. Synthesis of ultradispersed carbide powders in pulsed plasma. Fizika i Khimiya Obrabotki Mater. 1992;(2):73–6 (in Russian).

    Google Scholar 

  106. Shishkovskii VI, Kopytin YD, Gubaidullin NE. Preparation of ultradisperse powders of refractory nitrides and carbides in plasma of high-frequency discharge. In: Ultradisperse powders, materials and nanostructures. Production, properties, application/transactional interreg conference, December 17–19, 1996, Krasnoyarsk: Krasnoyarsk State Technical University; 1996. P. 56 (in Russian).

    Google Scholar 

  107. Blagoveshchenskii YV, Danilkin EA, Egorikhina TP, Terekhov VI. Nanocrystalline composite WC-Co. In: Physics and chemistry of ultradisperse systems/Trans. 4th all-Russian conference, Obninsk/Russia, June 29–July 3, 1998. Moscow: Moscow Engineering Physics Institute; 1998. p. 274 (in Russian).

    Google Scholar 

  108. Lebedev AV, Blagoveshchenskii YV, Moldaver VA. Creation of plasma-chemical equipment for manufacture of ultrafine powders of refractory metals and compounds. In: Physics and chemistry of ultradisperse systems/trans. 5th all-Russian conference, Yekaterinburg/Russia, October 9–13, 2000, Moscow: Moscow Engineering Physics Institute; 2000. p. 145–7 ( in Russian).

    Google Scholar 

  109. Gao L, Kear BH. Low temperature carburization of high surface area tungsten powders. Nanostruct Mater. 1995;5(5):555–69.

    Google Scholar 

  110. Gao L, Kear BH. Synthesis of nanophase WC powder by a displacement reaction process. Nanostruct Mater. 1997;9(3):205–8.

    Google Scholar 

  111. Kurlov AS, Nazarova SZ, Rempel AA. Production, structure and properties of nanocrystalline tungsten carbide. In: Ustinov VV, Noskova NI, editors. Nanotechnology and physics of functional nanocrystalline materials. Vol 1. Ekaterinburg: Ural Division of the Russsian Acadamey of Science; 2005, p. 59–67 (in Russian).

    Google Scholar 

  112. Kurlov AS, Nazarova SZ, Gusev AI. Magnetic susceptibility and thermal stability of nanocrystalline tungsten carbide. Doklady Akad Nauk. 2005;405(2):218–23 (in Russian) (English Translation. Dokl Phys Chem. 2005;405(1):229–34).

    Google Scholar 

  113. Kurlov AS, Nazarova SZ, Gusev AI. Magnetic susceptibility of tungsten carbide: relaxation and impurity effects. Pis’ma v ZhETF. 2005;82(8):567–72 (in Russian) (English Translation. JETP Lett. 2005;82(8):509–14).

    Google Scholar 

  114. Arató P, Bartha L, Porat R, Berger S, Rosen A. Solid or liquid phase sintering of nanocrystalline WC/Co hardmetals. Nanostruct Mater. 1998;10(2):245–55.

    Google Scholar 

  115. Sommer M, Schubert W-D, Zobetz E, Warbichler E. On the formation of very large WC crystals during sintering of ultrafine WC-Co alloys. Int J Refract Met Hard Mater. 2002;20(1):41–50.

    Google Scholar 

  116. Anishchik SV, Medvedev NN. Three-dimensional Apollonian packing as a model for dense granular systems. Phys Rev Lett. 1995;75(23):4314–17.

    Google Scholar 

  117. McCandlish LE, Kear BH, Kim BK. Processing and properties of nanostructured WC-Co. Nanostruct Mater. 1992;1(1):119–24.

    Google Scholar 

  118. Wu L, Lin J, Kim BK, Kear BH, McCandlish LE. Grain growth inhibition of nanostructured WC-Co alloys. In: Bildstein H, Eck R, editors. Proceedings of the 13th internship plansee seminar. Vol 3. Reutte: Metallwerk Plansee; 1993. p. 667–75.

    Google Scholar 

  119. McCandlish LE, Kear BH, Bhatia SJ. Spray conversion process for the production of nanophase composite powders. 1994. U.S. patent No 5352269.

    Google Scholar 

  120. Fang Z, Eason JW. Study of nanostructured WC-Co composites. In: Bildstein H, Eck R, editors. Proceedings of the 13th internship plansee seminar. Vol 3. Reutte: Metallwerk Plansee, 1993; p. 625–38.

    Google Scholar 

  121. Seegopaul P, McCandlish LE. Nanostructured WC-Co powders: review of application, processing and characterization properties. Adv Powder Metall Particular Mater. 1995;3:13-3–13-15.

    Google Scholar 

  122. Seegopaul P, McCandlish LE, Shinneman FM. Production capability and powder processing methods for nanostructured WC-Co powder. Int J Refract Met Hard Mater. 1997;15(1–3):133–8.

    Google Scholar 

  123. El-Eskandarany MS, Mahday AA, Ahmed HA., Amer AH. Synthesis and characterizations of ball-milled nanocrystalline WC and nanocomposite WC-Co powders and subsequent consolidations. J Alloys Compd. 2000;312(1–2):315–25.

    Google Scholar 

  124. Wu XY, Zhang W, Wang W, Yang F, Min JY, Wang BQ, Guo JD. Ultrafine WC-10Co cemented carbides fabricated by electric-discharge compaction. J Mater Res. 2004;19(8):2240–4.

    Google Scholar 

  125. Borisenko NI, Moldaver VA, Lebedev AV, Kobzarev NV. Experience of using of nanosized powders in technology of hardmetals. In: Physics and chemistry of ultradisperse systems/Transactional 6th all-Russian conference. Moscow: Moscow Engineering Physics Institute; 2003. p. 505–9 (in Russian).

    Google Scholar 

  126. Xueming MA, Gang JI. Nanostructured WC-Co alloy prepared by mechanical alloying. J Alloys Compd. 1996;245:L30–2.

    Google Scholar 

  127. Osborne C, Cornish L. On the preparation of fine V\(_{8}\)C\(_{7}\)-WC and V\(_{4}\)C\(_{3}\)-WC powders. Int J Refract Met Hard Mater. 1997;15(1–3):163–8.

    Google Scholar 

  128. Klyachko LI, Fal’kovskii VA, Khokhlov AM. Hard alloys based on tungsten carbide with fine structure. Moscow: Ruda i, Metally; 1999. p. 48 (in Russian).

    Google Scholar 

  129. Jia K, Fischer TE, Gallois B. Microstructure, hardness and toughness of nanostructured and conventional WC-Co composite. Nanostruct Mater. 1998;10(5):875–91.

    Google Scholar 

  130. Milman YV, Chugunova S, Goncharuck V. Low and high temperature hardness of WC-6 wt.% Co alloys. Int J Refract Met Hard Mater. 1997;15(1–3):97–101.

    Google Scholar 

  131. Sadangi RK, Voronov OA, Kear BH. WC-Co-diamond nanocomposites. Nanostruct Mater. 1999;12(5–8):1031–4.

    Google Scholar 

  132. Jain M, Sadangi RK, Cannon WR, Kear BH. Processing of functional graded WC/Co/diamond nanocomposites. Scripta Mater. 2001;44(8–9):2099–103.

    Google Scholar 

  133. Fang ZZ, Wang X, Ryu T, Hwang KS, Sohn HY. Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide—a review. Int J Refract Met Hard Mater. 2009;27(2):288–99.

    Google Scholar 

  134. Tret’yakov VI. Fundamentals of physical metallurgy and manufacturing technology of sintered hard alloys. Moscow: Metallurgiya; 1976. p. 528 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey S Kurlov .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kurlov, A.S., Gusev, A.I. (2013). Phases and Equilibria in the W–C and W–Co–C Systems. In: Tungsten Carbides. Springer Series in Materials Science, vol 184. Springer, Cham. https://doi.org/10.1007/978-3-319-00524-9_2

Download citation

Publish with us

Policies and ethics