Skip to main content

Quantum Vacuum Polarization Searches with High Power Lasers Below the Pair Production Regime

  • Chapter
Book cover Progress in Ultrafast Intense Laser Science

Part of the book series: Springer Series in Chemical Physics ((PUILS,volume 106))

Abstract

For high enough electromagnetic fields, such as those that can be achieved by ultra-intense laser pulses, light is expected to interact with light through the interchange of virtual particles. A rich phenomenology is then predicted to occur, such as the possible production of real electron-positron pairs for electromagnetic fields close enough to the Schwinger limit, or the polarization of the vacuum itself. These effects may be amplified by new physics, so that their search can also be used to test non-standard models involving axions or mini-charged particles. A recent work suggests that the diffraction of light by light in vacuum, in the absence of any material slit or obstacle, is most probably the first signature of the polarization of the vacuum that will be reachable in the near future. Surprisingly enough, this result could be achieved very soon in principle, either at a high repetition rate Petawatt facility such as VEGA, that is expected to be operative at the beginning of 2014 in Salamanca, Spain, or at other Multi-PW facilities, such as ELI-10 PW or PETAL. Calculations for a prospective 100-PW system are also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.L. Adler, Ann. Phys. 67, 599 (1971)

    Article  ADS  Google Scholar 

  2. M. Ahlers, H. Gies, J. Jaeckel, A. Ringwald, Phys. Rev. D 75, 035011 (2007)

    Article  ADS  Google Scholar 

  3. E.B. Aleksandrov, A.A. Anselm, A.N. Moskalev, Zh. Eksp. Teor. Fiz. 89, 1181 (1985)

    ADS  Google Scholar 

  4. P. Arias, J. Gamboa, H. Falomir, F. Méndez, Mod. Phys. Lett. A 24, 1289 (2009)

    Article  ADS  MATH  Google Scholar 

  5. A.R. Bell, J.G. Kirk, Phys. Rev. Lett. 101, 200403 (2008)

    Article  ADS  Google Scholar 

  6. D. Bernard et al., Eur. Phys. J. D 10, 141 (2000)

    Article  ADS  Google Scholar 

  7. M. Born, Proc. R. Soc. Lond. 143, 410 (1934)

    Article  ADS  MATH  Google Scholar 

  8. M. Born, L. Infeld, Proc. R. Soc. Lond. 144, 425 (1934)

    Article  ADS  Google Scholar 

  9. M. Bregant, et al., PVLAS collaboration, Phys. Rev. D 78, 032006 (2008)

    Article  ADS  Google Scholar 

  10. J.W. Brockway, E.D. Carlson, G.C. Raffelt, Phys. Lett. B 383, 439 (1996)

    Article  ADS  Google Scholar 

  11. G. Brodin, M. Marklund, L. Stenflo, Phys. Rev. Lett. 87, 171801 (2001)

    Article  ADS  Google Scholar 

  12. C. Bula et al., Phys. Rev. Lett. 76, 3116 (1996)

    Article  ADS  Google Scholar 

  13. D.L. Burke et al., Phys. Rev. Lett. 79, 1626 (1997)

    Article  ADS  Google Scholar 

  14. V. Costantini, B. De Tollis, G. Pistoni, Nuovo Cimento 2A, 733 (1971)

    Article  ADS  Google Scholar 

  15. S. Davidson, B. Campbell, D. Bailey, Phys. Rev. D 43, 2314 (1991)

    Article  ADS  Google Scholar 

  16. S. Davidson, S. Hannestad, G. Raffelt, J. High Energy Phys. 05, 003 (2005)

    ADS  Google Scholar 

  17. V.I. Denisov, I.V. Krivchenkov, N.V. Kravtsov, Phys. Rev. D 69, 066008 (2004)

    Article  ADS  Google Scholar 

  18. Y.J. Ding, A.E. Kaplan, Int. J. Nonlinear Opt. Phys. 1, 51 (1992)

    Article  Google Scholar 

  19. A. Di Piazza, K.Z. Hatsagortsyan, C.H. Keitel, Phys. Rev. Lett. 97, 083603 (2006)

    Article  ADS  Google Scholar 

  20. B. Dobrich, H. Gies, J. High Energy Phys. 10, 022 (2010)

    Article  ADS  Google Scholar 

  21. M.I. Dobroliubov, A.Y. Ignatiev, Phys. Rev. Lett. 65, 679 (1990)

    Article  ADS  Google Scholar 

  22. N.V. Elkina et al., Phys. Rev. Spec. Top., Accel. Beams 14, 054401 (2011)

    Article  ADS  Google Scholar 

  23. A.M. Fedotov, N.B. Narozhny, G. Mourou, G. Korn, Phys. Rev. Lett. 105, 080402 (2010)

    Article  ADS  Google Scholar 

  24. A. Ferrando, H. Michinel, M. Seco, D. Tommasini, Phys. Rev. Lett. 99, 150404 (2007)

    Article  ADS  Google Scholar 

  25. H. Gies, J. Jaeckel, A. Ringwald, Phys. Rev. Lett. 97, 140402 (2006)

    Article  ADS  Google Scholar 

  26. E. Golowich, R.W. Robinett, Phys. Rev. D 35, 391 (1987)

    Article  ADS  Google Scholar 

  27. J.A. Grifols, E. Masso, R. Toldra, Phys. Rev. Lett. 77, 2372 (1996)

    Article  ADS  Google Scholar 

  28. T. Heinzl, B. Liesfeld, K.U. Amthor, H. Schwoerer, R. Sauerbrey, A. Wipf, Opt. Commun. 267, 318 (2006)

    Article  ADS  Google Scholar 

  29. W. Heisenberg, H. Euler, Z. Physik 98, 714 (1936)

    Article  ADS  Google Scholar 

  30. B. Holdom, Phys. Lett. B 166, 196 (1986)

    Article  ADS  Google Scholar 

  31. B. Holdom, Phys. Lett. B 178, 65 (1986)

    Article  ADS  Google Scholar 

  32. B. King, A. Di Piazza, C.H. Keitel, Nat. Photonics 4, 92 (2010)

    Article  ADS  Google Scholar 

  33. J.J. Klein, B.P. Nigam, Phys. Rev. B 135, 1279 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  34. I. Kuznetsova, J. Rafelski, Phys. Rev. D 85, 085014 (2012)

    Article  ADS  Google Scholar 

  35. S.A. Lee, W.M. Fairbank Jr., Measuring the birefringence of the QED vacuum, in Laser Physics at the Limits, ed. by H. Figger, D. Meschede, C. Zimmermann (Springer, Berlin, 2002), p. 189

    Chapter  Google Scholar 

  36. E. Lundstrom, G. Brodin, J. Lundin, M. Marklund, R. Bingham, J. Collier, J.T. Mendonça, P. Norreys, Phys. Rev. Lett. 96, 083602 (2006)

    Article  ADS  Google Scholar 

  37. M. Marklund, Nat. Photonics 4, 72 (2010)

    Article  ADS  Google Scholar 

  38. M. Marklund, P.K. Shukla, Rev. Mod. Phys. 78, 591 (2006)

    Article  ADS  Google Scholar 

  39. E. Masso, Nucl. Phys. Proc. Suppl. 114, 67 (2003)

    Article  ADS  Google Scholar 

  40. E. Masso, R. Toldra, Phys. Rev. D 52, 1755 (1995)

    Article  ADS  Google Scholar 

  41. E. Masso, R. Toldra, Phys. Rev. D 55, 7967 (1997)

    Article  ADS  Google Scholar 

  42. J. McKenna, P.M. Platzman, Phys. Rev. 129, 2354 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  43. A.I. Milstein, M. Schumacher, Phys. Rep. 243, 183 (1994)

    Article  ADS  Google Scholar 

  44. F. Moulin, D. Bernard, Opt. Commun. 164, 137 (1999)

    Article  ADS  Google Scholar 

  45. G.A. Mourou, T. Tajima, S.V. Bulanov, Rev. Mod. Phys. 78, 309 (2006)

    Article  ADS  Google Scholar 

  46. E.N. Nerush, I.Yu. Kostyukov, A.M. Fedotov, N.B. Narozhny, N.V. Elkina, H. Ruhl, Phys. Rev. Lett. 106, 035001 (2011)

    Article  ADS  Google Scholar 

  47. E.N. Nerush, V.F. Bashmakov, I.Yu. Kostyukov, Phys. Plasmas 18, 083107 (2011)

    Article  ADS  Google Scholar 

  48. R.D. Peccei, H.R. Quinn, Phys. Rev. Lett. 38, 1440 (1977)

    Article  ADS  Google Scholar 

  49. J. Schwinger, Phys. Rev. 128, 2425 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. D. Tommasini, H. Michinel, Phys. Rev. A 82, 011803(R) (2010)

    Article  ADS  Google Scholar 

  51. D. Tommasini, A. Ferrando, H. Michinel, M. Seco, Phys. Rev. A 77, 042101 (2008)

    Article  ADS  Google Scholar 

  52. D. Tommasini, A. Ferrando, H. Michinel, M. Seco, J. High Energy Phys. 11, 043 (2009)

    Article  ADS  Google Scholar 

  53. V. Yanovsky, V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Matsuoka, A. Maksimchuk, J. Nees, G. Cheriaux, G. Mourou, K. Krushelnick, Opt. Express 16, 2109 (2008)

    Article  ADS  Google Scholar 

  54. G. Zavattini et al., PVLAS collaboration, arXiv:1201.2309v1 (2012)

  55. http://www.clpu.es/en/infrastructures/main-beam-line/phase-3.html

  56. G.A. Mourou, G. Korn, W. Sandner, J.L. Collier (eds.), ELI-Extreme Light Infrastructure, Science and Technology with Ultra-Intense Lasers Whitebook (CNRS, Paris, 2011)

    Google Scholar 

  57. http://petal.aquitaine.fr/

  58. http://www.extreme-light-infraestructure.eu

Download references

Acknowledgements

We acknowledge support from Spanish Ministerio de Economía y Competitividad (through the projects Consolider Program SAUUL CSD2007-00013, FCCI: ACI-PROMOCIONA ACI2009-1008, and FIS2009-09522), and from the Spanish Junta de Castilla y Leon (project CLP421A12-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Roso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tommasini, D., Novoa, D., Roso, L. (2014). Quantum Vacuum Polarization Searches with High Power Lasers Below the Pair Production Regime. In: Yamanouchi, K., Paulus, G., Mathur, D. (eds) Progress in Ultrafast Intense Laser Science. Springer Series in Chemical Physics(), vol 106. Springer, Cham. https://doi.org/10.1007/978-3-319-00521-8_9

Download citation

Publish with us

Policies and ethics