Skip to main content

The Optimum Design of Laminated Slender Beams with Complex Curvature Using a Genetic Algorithm

  • Chapter
  • First Online:
Experimental and Numerical Investigation of Advanced Materials and Structures

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 41))

  • 1129 Accesses

Abstract

The chapter presents the optimum structural design for composite slender beams with complex curvature. The optimization process is performed using a genetic algorithm (GA), associated with a variational asymptotic method for the structural analysis. The stiffness control of arbitrary, complex sections under some design conditions is performed for composite beam where the geometrically nonlinear characteristic of the structure is considered. The objective function was defined as the weight, strength and fatigue life. The laminate thicknesses are to be determined optimally by defining a design index comprising a weighted average of the objective functions and determining the minimum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kärger, L., Wetzel, A., Rolfes, R., Rohwer, K.: A three-layered sandwich element with improved transverse shear stiffness and stresses based on FSDT. Comput. Struct. 84, 843–854 (2006)

    Article  Google Scholar 

  2. Sathyamoorthy, M.: Effects of large amplitude, transverse shear and rotatory inertia on vibration of orthotropic elliptical plates. Int. J. Non-Linear Mech. 16, 327–335 (1981)

    Article  MATH  Google Scholar 

  3. Giavotto, V., Borri, M., Mantegazza, P., Ghiringhelli, G., Carmaschi, V., Maffioli, G., Mussi, F.: Anisotropic beam theory and applications. Comput. Struct. 16, 403–413 (1983)

    Article  MATH  Google Scholar 

  4. Kosmatka, J., Dong, S.B.: Saint-venant solutions for prismatic anisotropic beams. Int. J. Solids Struct. 28, 917–938 (1991)

    Article  MATH  Google Scholar 

  5. Friedman, Z., Kosmatka, J.B.: Exact stiffness matrix of a nonuniform beam II. Bending of a timoshenko beam. Comput. Struct. 49, 545–555 (1993)

    Article  MATH  Google Scholar 

  6. Berdichevskii, V.L.: Variational-asymptotic method of constructing a theory of shells. Appl. Math. Mech. 43(4), 664–687 (1979)

    Google Scholar 

  7. Hodges, D.H.: Nonlinear composite beam theory. AIAA 41, 1131–1137 (2006)

    Google Scholar 

  8. Yu, W., Hodges, D.H., Volovoi, V., Cesnik, C.E.S.: On Timoshenko-like modeling of initially curved and twisted composite beams. Int. J. Solids Struct. 39, 5101–5121 (2002)

    Article  MATH  Google Scholar 

  9. Yu, W.: VABS manual for users (2010)

    Google Scholar 

  10. Cesnik, C.E.S., Hodges, D.H.: VABS: a new concept for composite rotor blade cross-sectional modeling. JAHS 42, 27–38 (1997)

    Article  Google Scholar 

  11. Yeo, H., Ormiston. R.A.: Assessment of 1-d versus 3-d methods for modeling rotor blade structural dynamics, 51st AIAA Conference (2010)

    Google Scholar 

  12. Goldberg, D.E.: Genetic algorithms in search, operation, and machine leaming. Addison-Wesley Publishìng Company (1989)

    Google Scholar 

  13. Wang, B.P., Tho, C.H., Henson, M.: Minimization of spring-in composite angle components by genetic algorithm. AIAA 97, 2733–2738 (1997)

    Google Scholar 

  14. Hajela, P., Lee, J.: Genetic algorithms in multidisciplinary rotor blade design. AIAA 95, 2187–2197 (1995)

    Google Scholar 

  15. Riche, R.L., Haftka, R.T.: Optimization of laminate stacking sequence for buckling load maximation by genetic algorithm. AIAA 31, 951–956 (1993)

    Article  MATH  Google Scholar 

  16. Liu, B., Haftka, R.T., Akgum, M.A. Permutation genetic algorithm for stacking sequence optimization, AIAA-98-1830, 1141–1152 (1998)

    Google Scholar 

  17. MIL-S8698, Structural design requirements, helicopters, 3.1.10 Load Factor

    Google Scholar 

  18. Johnson, W.: CAMRAD II Comprehensive analytical model of rotorcraft aerodynamics and dynamics. Johnson Aeronautics (2008)

    Google Scholar 

  19. Hodges, D.H., Popescu, B.: On asymptotically correct timoshenko-like anisotropic beam theory. Int. J. Solids Struct. 37, 535–558 (1999)

    MathSciNet  Google Scholar 

  20. Cesnik, C.E.S., Hodges, D.H.: Variational-asymptotical analysis of initially twisted and curved composite beams. Finite Elem. Anal. Des. 1, 177–187 (1994)

    Google Scholar 

  21. Hodges, D.H., Yu, W.: A rigorous, engineer-friendly approach for modelling realistic, composite rotor blades. Wind Energy 10, 179–193 (2007)

    Article  Google Scholar 

  22. Volovoi, V.V., Hodges, D.H., Cesnik, C.E.S., Popescu, B.: Assessment of beam modeling methods for rotor blade applications. Math. Comput. Model 33, 1099–1112 (2001)

    Article  MATH  Google Scholar 

  23. Pilkey, W.D., Wunderlich. W.: Mechanics of structures variational and computational methods (1994)

    Google Scholar 

  24. Librescu, L., Song, O.: Thin-walled composite beams theory and application (2006)

    Google Scholar 

  25. Hodges, D.H., Popescu, B.: Asymptotic treatment of the trapeze effect in finite element cross-sectional analysis of composite beams. Int. J. Nonlinear Mechanics 34, 709–721 (1999)

    Article  MATH  Google Scholar 

  26. Hodges, D.H.: A mixed variational formulation based on exact intrinsic equations for dynamics of moving beams. Int. J. Solids and Structures 26, 1253–1273 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Patil, M.J., Althoff, M, Energy-consistent, galerkin approach for the nonlinear dynamics of beams using mixed, intrinsic equations, 47th AIAA Conference (2006)

    Google Scholar 

  28. Johnson, E.R., Vasiliev, V.V., Vasiliev, D.V.: Anisotropic thin-walled beams with closed cross-sectional contours. AIAA 39, 27–38 (1998)

    Google Scholar 

  29. Ball, N.R., Sargent, P.M., Ige, D.O. Genetic algorithm representations for laminate layups. Artif. Intell. Eng. Des. Anal. Manuf. 8 99–108 (1993)

    Google Scholar 

  30. Conceição António, C., Hoffbauer, L.N.: Uncertainty analysis based on sensitivity applied to angle-ply composite structures. Reliab. Eng. Syst. Safety 92, 1353–1362 (2007)

    Article  Google Scholar 

  31. Keller, D.: Optimization of ply angles in laminated composite structures by a hybrid, asynchronous, parallel evolutionary algorithm. Composite Structures 92, 2781–2790 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Hoon Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jang, J.H., Kim, J.H. (2013). The Optimum Design of Laminated Slender Beams with Complex Curvature Using a Genetic Algorithm. In: Öchsner, A., Altenbach, H. (eds) Experimental and Numerical Investigation of Advanced Materials and Structures. Advanced Structured Materials, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-319-00506-5_7

Download citation

Publish with us

Policies and ethics