Skip to main content

An Optimization Procedure to Estimate the Permittivity of Ferrite-Polymer Composite

  • Chapter
  • First Online:
Experimental and Numerical Investigation of Advanced Materials and Structures

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 41))

Abstract

A numerical optimization method is performed using the MATLAB program to estimate the relative complex permittivity of each component of Samarium-substituted Yttrium Iron Garnet nanoparticles in Poly-vinylidene-fluride (Sm-YIG-PVDF) composite samples. The optimization is taken as the optimized parameters that yield a minimum sum for the absolute differences between the calculated impedance obtained by using the permittivity calculated from Maxwell–Garnett (MG) formula and the measured equivalent one over the entire frequency range named the objective function (M). The guessed (estimated) ranges of the complex permittivity are based on the measured values of each component of Sm-YIG-PVDF composite samples. The optimized (optimum) impedance values are in very good agreement with the measured one for each composite and within the estimated ranges. More details on the optimization procedure are illustrated, and the permittivity of different composition dependence on the mole fraction of the Sm-YIG-PVDF composite materials is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salamone, J.C.: Polymeric Materials Encyclopedia, vol. 4, p. 2536. CRC Press, Boca Raton (1996)

    Google Scholar 

  2. Salamone, J.C.: Polymeric Materials Encyclopedia, vol. 9, pp. 7115–7126. CRC Press, Boca Raton (1996)

    Google Scholar 

  3. Chen, P., Wu, R.X., Zhao, T., Yang, F., Xiao, J.Q.: Complex permittivity and permeability of metallic magnetic granular composites at microwave frequencies. J. Phys. D. Appl. Phys 38, 2302–2305 (2005)

    Article  Google Scholar 

  4. Gupta, N., Kashyap, S.C., Dube, D.C.: Microwave behavior of substituted lithium ferrite composites in X-band. J. Magn. Magn. Mater. 288, 307–314 (2005)

    Article  Google Scholar 

  5. Kimura, S., Kato, T., Hyodo, T., Shimizu, Y., Egashira, M.: Electromagnetic wave absorption properties of carbonyl iron-ferrite/PMMA composites fabricated by hybridization method. J. Magn. Magn. Mater. 312(1), 181–186 (2007)

    Article  Google Scholar 

  6. Yang, Q., Zhang, H., Liu, Y., Wen, Q., Jia, L.: The magnetic and dielectric properties of microwave sintered yttrium iron garnet (YIG). J. Mater. Lett. 62(17–18), 2647–2650 (2008)

    Article  Google Scholar 

  7. Abbas, S.M., Dixit, A.K., Chatterjee, R., Goel, T.C.: Complex permittivity, complex permeability and microwave absorption properties of ferrite-polymer composites. J. Magn. Magn. Mater. 309(1), 20–24 (2007)

    Article  Google Scholar 

  8. Dosoudil, R., Ušáková, M., Franek, J., Sláma, J., Olah, V.: RF electromagnetic wave absorbing properties of ferrite polymer composite materials. J. Magn. Magn. Mater. 304(2), e755–e757 (2006)

    Article  Google Scholar 

  9. Abbas, Z., Pollard, R.D., Kelsall, R.W.: Complex permittivity measurements at Ka-band using rectangular dielectric waveguide. IEEE Trans. Instrum. Meas. 50(5), 1334–1342 (2001)

    Article  Google Scholar 

  10. Chen, L., Varadan, V.V., Ong, C.K., Neo, C.P.: Microwave electronics: measurement and materials characterization. Wiley, New Jersey (2004)

    Google Scholar 

  11. Priou, A.: Dielectric properties of heterogeneous materials. Elsevier Science Publishing Co., Inc., New York (1992) ISBN: 0444-01646-5

    Google Scholar 

  12. Agilent: Agilent 4291B RF Impedance/Material Analyzer/Operation Manual, 3rd edn. Agilent Technologies, Tokyo (1999)

    Google Scholar 

  13. Palm, W.J.: Introduction to MATLAB 7 for Engineers, 2nd edn. McGraw Hill Professional, New York (2004)

    Google Scholar 

  14. Büyüköztürk, O., Yu, T.Y., Ortega, J.A.: A methodology for determining complex permittivity of construction materials based on transmission-only coherent, wide-bandwidth free-space measurements. J. Cement. Concr. Compos. 28(4), 349–359 (2006)

    Google Scholar 

  15. Okubo, H., Shumiya, H., Ito, M., Kato, K.: Optimization techniques on permittivity distribution in permittivity graded solid insulators. In: Conference Record of the 2006 IEEE International Symposium on Electrical Insulation. 11–14 June, pp. 519–522 (2006)

    Google Scholar 

  16. Koledintseva, M., Drewniak, J., Zhang, Y., Lenn, J., Thoms, M.: Modeling of ferrite-based materials for shielding enclosures. J. Magn. Magn. Mater. 321(7), 730–733 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

Azzaytuna University-Libya, Nano and Advanced Technology Project under National Authority of Scientific Research (NASR), Tripoli, Libya and Universiti Putra Malaysia (UPM) are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramadan Al-Habashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Al-Habashi, R., Abbas, Z. (2013). An Optimization Procedure to Estimate the Permittivity of Ferrite-Polymer Composite. In: Öchsner, A., Altenbach, H. (eds) Experimental and Numerical Investigation of Advanced Materials and Structures. Advanced Structured Materials, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-319-00506-5_19

Download citation

Publish with us

Policies and ethics