Trajectory Data Analysis Over a Cloud-Based Framework for Smart City Analytics

  • Eugenio CesarioEmail author
  • Carmela Comito
  • Domenico Talia
Part of the Internet of Things book series (ITTCC)


The chapter presents a Cloud-based framework that can be tailored to be used in different scenarios of urban planning and management occuring in Smart Cities. The focus is on the management of large-scale socio-geographic data obtained through the trajectories traced by smart objects. Our goal is to mine human activities and routines from this socio-geographic data in order to catch user’s behaviour. To this aim, we introduce a methodology for trajectory pattern mining consisting in (a) finding frequent regions, more densely passed through ones, and (b) extracting trajectory patterns from those regions. Experimental evaluation shows that due to complexity and large data involved in the application scenario, the trajectory pattern mining process can take advantage from a parallel execution environment offered by a Cloud architecture.


Cloud Computing Smart City Cloud Infrastructure Trajectory Data Smart Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research work has been partially funded by the MIUR projects TETRIS (PON01_00451) and DICET-INMOTO (PON04a2_D).


  1. 1.
  2. 2.
  3. 3.
  4. 4.
  5. 5.
  6. 6.
  7. 7.
  8. 8.
  9. 9.
  10. 10.
    Ankerst, M., Breunig, M.M., peter Kriegel, H., Sander, J.: Optics: ordering points to identify the clustering structure. In: Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data, SIGMOD ’99. ACM, pp. 49–60 (1999)Google Scholar
  11. 11.
    Anthopoulos, L.G., Vakali, A.: The future internet, chap. Urban Planning and Smart Cities: Interrelations and Reciprocities. Springer, Berlin, pp. 178–189 (2012)Google Scholar
  12. 12.
    Cesario, E., Comito, C., Talia, D.: Towards a cloud-based framework for urban computing. The trajectory analysis case. In: Proceedings of the 3rd International Conference on Cloud and Green Computing, CGC ’13. IEEE (2013). To appearGoogle Scholar
  13. 13.
    Giannotti, F., Nanni, M., Pinelli, F., Pedreschi, D.: Trajectory pattern mining. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’07. ACM, pp. 330–339 (2007)Google Scholar
  14. 14.
    Grama, A., Karypis, G., Kumar, V., Gupta, A.: Introduction to Parallel Computing. Pearson (2003)Google Scholar
  15. 15.
    Jackson, K.: OpenStack Cloud Computing Cookbook. Packt Publishing (2012)Google Scholar
  16. 16.
    Jeung, H., Liu, Q., Shen, H., Tao Zhou, X.: A hybrid prediction model for moving objects. In: Proceedings of the 2008 IEEE 24th International Conference on Data Engineering, ICDE ’08, IEEE Computer Society, pp. 70–79 (2008)Google Scholar
  17. 17.
    Mamoulis, N., Cao, H., Kollios, G., Hadjieleftheriou, M., Tao, Y., Cheung, D.W.: Mining, indexing, and querying historical spatiotemporal data. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’04. ACM, pp. 236–245 (2004)Google Scholar
  18. 18.
    Monreale, A., Pinelli, F., Trasarti, R., Giannotti, F.: Wherenext: a location predictor on trajectory pattern mining. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’09. ACM, pp. 637–646 (2009)Google Scholar
  19. 19.
    Moreno-Vozmediano, R., Montero, R.S., Llorente, I.M.: Iaas cloud architecture: From virtualized datacenters to federated cloud infrastructures. Computer 45(12), 65–72 (2012)CrossRefGoogle Scholar
  20. 20.
    Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., Zagorodnov, D.: The eucalyptus open-source cloud-computing system. In: Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, CCGRID ’09. IEEE Computer Society, pp. 124–131 (2009)Google Scholar
  21. 21.
    Sander, J., Ester, M., Kriegel, H.P., Xu, X.: Density-based clustering in spatial databases: the algorithm gdbscan and its applications. Data Min. Knowl. Discov. 2(2), 169–194 (1998)CrossRefGoogle Scholar
  22. 22.
    Talia, D.: Clouds for scalable big data analytics. Computer 46(5), 98–101 (2013)CrossRefGoogle Scholar
  23. 23.
    Yuan, J., Zheng, Y., Xie, X., Sun, G.: Driving with knowledge from the physical world. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’11. ACM, pp. 316–324 (2011)Google Scholar
  24. 24.
    Yuan, J., Zheng, Y., Xie, X., Sun, G.: T-drive: enhancing driving directions with taxi drivers’ intelligence. IEEE Trans. Knowl. Data Eng. 25(1), 220–232 (2013)CrossRefGoogle Scholar
  25. 25.
    Yuan, J., Zheng, Y., Zhang, C., Xie, W., Xie, X., Sun, G., Huang, Y.: T-drive: driving directions based on taxi trajectories. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS ’10. ACM, pp. 99–108 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Eugenio Cesario
    • 1
    Email author
  • Carmela Comito
    • 1
  • Domenico Talia
    • 2
  1. 1.ICAR-CNRRende (CS)Italy
  2. 2.ICAR-CNR and DIMES-UNICALRende (CS)Italy

Personalised recommendations