Skip to main content

Introduction: Whiskers and Their Role in Component Reliability

  • Chapter
  • First Online:
Factors Governing Tin Whisker Growth

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Tin (Sn) whiskers are electrically conductive, single crystal eruptions that can grow from surfaces where tin is deposited on a substrate surface. They present reliability problems for the electronics industry due to the formation of stable, bridging shorts in low voltage, high impedance circuits. Continuing reports of Sn whisker-induced failures coupled with the lack of an industry-accepted understanding of tin whisker growth and/or test methods to identify whisker-prone products has made blanket acceptance of pure tin plating a risky proposition in high reliability systems. Special attention has been devoted to measurements of whiskering under a variety of rigorously controlled environmental factors such as substrate roughness, Sn film thickness (and depletion due to whisker growth), gas environment, humidity, film stress state and Sn oxides, which are known to play a significant role in whisker production. This research is designed to clarify and control the mechanisms that govern whisker formation, with an ultimate objective to discover how to impede and/or prevent whisker growth, either by surface coatings or by modifications of the thin film properties.

Quantum Physics means anything can happen at any time for no reason.

Professor Hubert Farnsworth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.L. Cobb, Cadmium Whiskers. Mon. Rev. Am. Electroplaters Soc. 33(28), 28–30 (1946)

    Google Scholar 

  2. K.G. Compton, A. Mendizza, S.M. Arnold, Filamentary growths on metal surfaces—Whiskers. Corrosion 7(10), 327–334 (1951)

    Google Scholar 

  3. S.M. Arnold, The growth of metal whiskers on electrical components, in Proceedings of the IEEE Electronic Components Technology Conference (1959), pp. 75–82

    Google Scholar 

  4. C.H. Pitt, R.G. Henning, Pressure-induced growth of metal whiskers. J. Appl. Phys. 35, 459–460 (1964)

    Article  ADS  Google Scholar 

  5. S.C. Britton, Spontaneous growth of whiskers on tin coatings: 20 Years of observation. Trans. Inst. Met. Finish. 52, 95–102 (1974)

    Google Scholar 

  6. B.D. Dunn, Metallurgy and reliability in spacecraft electronics. Met. Mater. 34, 32–40 (1975)

    Google Scholar 

  7. B.D. Dunn, Whisker formation on electronic materials. Circuit World 2(4), 32–40 (1976)

    Article  Google Scholar 

  8. B.D. Nordwall, Air force links radar problems to growth of tin whiskers. Aviat. Week Space Technol. 65–68 (1986)

    Google Scholar 

  9. J. Capitano, J. Devaney, Reliability improvement by removing electrical interrupts in equipment which result in retest–OK, Can’t Duplicate, No Defect Found, in Proceedings of the National Aerospace and Electronics Conference (NAECON) (1986), pp. 1110–1114

    Google Scholar 

  10. L. Corbid, Constraints on the use of tin plate in miniature electronic packages, in Proceedings of the 3rd International Electronics Conference, SAMPE (1989), pp. 773–778

    Google Scholar 

  11. K. Cunningham, M. Donahue, Tin whiskers: mechanism of growth and prevention, in Proceedings of the 4th International Electronics Conference, SAMPE (1990), pp. 569–575

    Google Scholar 

  12. R. Diehl, Significant characteristics of tin and tin-lead contact electrodeposits for electronic connectors. Met. Fin. 37–42 (1993)

    Google Scholar 

  13. M. Ishii, T. Kataoka, H. Kruihara, Whisker problem in ultra-fine pitch circuits, in Proceedings of the 12th European Microelectronics and Packaging Conference (1999), pp. 379–385

    Google Scholar 

  14. General Electric Service Bulletin: Document no. MOD10 SB-100.03.27, (2000), http://www.geindustrial.com/pm/support/dls/dlssb01.pdf

  15. C. Stevens, Relay failures induced by the growth of tin whiskers: a case study, in Proceedings of the 38th Ann. Spring Reliability Symposium, IEEE Boston Chapter (2001), pp. 1–6

    Google Scholar 

  16. J. Khuri, Agency action notice, in Government-Industry Data Exchange Program (GIDEP) (2002)

    Google Scholar 

  17. National Measurement Office (NMO), http://www.bis.gov.uk/nmo/enforcement

  18. M. Warwick, Implementing lead free soldering—European Consortium Research, SMTA. J. Surf. Mount Tech. 12(4), 1–12 (1999)

    Google Scholar 

  19. C. Xu, Y. Zhang, C. Fan, J.A. Abys, Understanding whisker phenomenon: the driving force for whisker formation. Circuit Tree 94–104 (2002)

    Google Scholar 

  20. J.H. Richardson, B.R. Lasley, Tin whisker initiated vacuum metal arcing in spacecraft electronics, in Government Microcircuit Applications Conference, XVIII, 119–122 (1992)

    Google Scholar 

  21. J. Brusse, QSS Group, Inc @ NASA Goddard, A Discussion of the Significance of Metal Whisker Formation to the High Reliability Community (2003), http://nepp.nasa.gov/whisker/reference/tech_papers/brusse2003-metal-whisker-discussion.pdf

  22. G.T. Galyon, C. Xu, S. Lal, B. Notohardjono, A. Frye, ECTC2005 iNEMI Tin Whisker Modeling Committee, iNEMI Tin Whisker Workshop, in IEEE Elec. Comp. & Tech. Conf., Lake Buena Vista, FL (2005)

    Google Scholar 

  23. B.Z. Lee, D.N. Lee, Spontaneous growth mechanism of tin whiskers. Acta Metall. 46(10), 3701–3714 (1998)

    Google Scholar 

  24. S. Madra, Thermo-mechanical characterization of lead-free tin plating: X-ray diffraction measurements and correlation with analytical and numerical models, in IPC/JEDEC Meeting, Frankfurt, Germany (2003), pp. 115–120

    Google Scholar 

  25. J. Smetana, iNEMI Tin Whisker User Group, iNEMI Recommendations on Lead-Free Finishes for Components Used in High-Reliability Products, IPC/APEX (2006)

    Google Scholar 

  26. W.J. Boettinger, C.E. Johnson, L.A. Bendersky, K.W. Moon, M.E. Williams, G.R. Stafford, Whisker and Hillock Formation on Sn, Sn-Cu and Sn-Pb electrodeposits. Acta Met. 53, 5033–5050 (2005)

    Article  Google Scholar 

  27. P. Harris, The growth of tin whiskers. Int. Tin Res. Inst. Publ. 734, 1–19 (1994)

    Google Scholar 

  28. J.H. Zhao, P. Su, M. Ding, S. Chopin, P.S. Ho, Microstructure-based stress modeling of tin whisker growth. IEEE Trans. Electron. Packag. Manuf. 29, 265–273 (2006)

    Article  Google Scholar 

  29. W.J. Choi, G. Galyon, K.N. Tu, T.Y. Lee, The Structure and Kinetics of Tin-Whisker Formation and Growth on High Tin Content Finishes, Handbook of Lead-Free Solder Technology for Microelectronic Assemblies, Chapter 21 (2004)

    Google Scholar 

  30. JEDIC/IPC Joint Publication No. 002

    Google Scholar 

  31. P.T. Vianco, J.A. Rejent, Dynamic recrystallization (DRX) as the mechanism for Sn whisker development. Part I: A Model. J. Electron. Mater. 38, 1815–1825 (2009)

    Article  ADS  Google Scholar 

  32. N. Hannay, W. Kaiser, C. Thurmond, The Solid State. Annu. Rev. Phys. Chem. 11, 407–426 (1960)

    Article  ADS  Google Scholar 

  33. I. Boguslavsky, P. Bush, Recrystallization principles applied to whisker growth in tin, in Proceedings of the APEX Conference, Anaheim, CA (2003) S12-4-1–S12-4-10

    Google Scholar 

  34. A.T. Wu, Y.C. Ding, The suppression of tin whisker growth by the coating of tin oxide nano particles and surface treatment. Microelectron. Reliab. 49, 318–322 (2009)

    Article  Google Scholar 

  35. J. Smetana, Theory of tin whisker growth: “The End Game”. IEEE Trans. Electron. Packag. Manuf. 30(1), 11–22 (2007)

    Article  Google Scholar 

  36. S.W. Han, K.S. Kim, C.H. Yu, M. Osterman, M. Pecht, Observations of the spontaneous growth of tin whiskers in various reliability conditions, in IEEE Electronic Components and Technology Conference (2008), pp. 1484–1490

    Google Scholar 

  37. K. Suganuma, A. Baated, K.S. Kim, K. Hamasaki, N. Nemoto, T. Nakagawa, T. Yamada, Sn whisker growth during thermal cycling. Acta Mater. 59, 7255–7267 (2011)

    Article  Google Scholar 

  38. K.N. Tu, Electronic Thin-Film Reliability (Cambridge University Press, New York, 2011)

    Google Scholar 

  39. K.W. Moon, C.E. Johnson, M.E. Williams, O. Kongstein, G.R. Stafford, C.A. Handwerker, W.J. Boettinger, Observed correlation of Sn Oxide Film to Sn whisker growth in Sn-Cu electrodeposit for Pb-Free solders. J. Elect. Mat. 34, L31–L33 (2005)

    Article  ADS  Google Scholar 

  40. P. Oberndorff, J. Klerk, M. Dittes, P. Crema, Whisker Formation on Sn-Plated Components, in Proceedings of the Conference on Electronics Goes Green 2004+, Berlin, Germany, 6–8 Sept. (2004), pp. 347–352

    Google Scholar 

  41. R.J. Fields, S.R. Low III G.K. Lucey Jr, in The Metal Science of Joining ed. by M.J Cieslak, J.H. Perepezko, S. Kang, M.E. Glicksman (The Minerals, Metals and Materials Society, Warrendale, PA, 1992), pp. 165–173

    Google Scholar 

  42. N. Saunders, A.P. Miodownik, The Cu-Sn (Copper-Tin) System. J. Phase Equilib. 11, 278 (1990)

    Google Scholar 

  43. Y. Zhang, C. Fan, C. Xu, O. Khaselev, J.A. Abys, Tin whisker growth—Substrate effect understanding CTE mismatch and IMC formation. CircuiTree 7, 70–82 (2004)

    Google Scholar 

  44. J.A. Brusse, Tin whisker observations on pure tin-plated ceramic chip capacitors, in AESF SUR/FIN Proceedings, Orland (2002), pp. 45–61

    Google Scholar 

  45. J.A. Brusse, G. Ewell, J.P. Siplon, Tin whiskers: attributes and mitigation, in Proceedings of 22nd Capacitor and Resistor Technology Symposium, 25–29 March (2002), pp. 67–80

    Google Scholar 

  46. M. Dittes, P. Oberndorff, L. Petit, Tin whisker formation-results, test methods and countermeasures, in Proc. 53rd Electronic Components and Technology Conference (2003), pp. 822–826

    Google Scholar 

  47. P. Oberndorff, M. Dittes, L. Petit, Intermetallic formation in relation to tin whiskers, in Proceedings of the IPC/Soldertec International Conference “Towards Implementation of the RHS Directive,” Brussels, Belgium (2003), pp. 170–178

    Google Scholar 

  48. P. Oberndorff, M. Dittes, P. Crema, Whisker formation on Sn plating, in Proceedings of the IPC/JEDEC 5th International Conference on Pb-Free Electronic Assemblies and Components, San Jose (2004), pp. 34–34

    Google Scholar 

  49. V.D. Glazunova, N.T. Kurdryavtsev, An investigation of the conditions of spontaneous growth of filiform crystals on electrolytic coatings, translated from Zhurnal Prikladnoi Khimii 36(3), 543–550 (1963)

    Google Scholar 

  50. J. Osenbach, R. Shook, B. Vaccaro, B. Pottieger, A. Amin, P. Ruengsinsub, K. Hooghan, The effects of board assembly reflow processing on Sn whisker formation, in Proceedings of the IPC/JEDEC Pb-Free Conference (2004)

    Google Scholar 

  51. B. Rickett, G. Flowers, S. Gale, J. Suhling, Potential for whisker formation in lead-free electroplated connector finishes, in Proceedings SMTA International Conference, Chicago, IL (2004), pp. 707–716

    Google Scholar 

  52. P. Su, J. Howell, S. Chopin, A statistical study of Sn whisker population and growth during elevated temperature and humidity storage tests, in IEEE Transactions on Electronics Packaging Manufacturing, 55th ECTC Workshop, vol. 29 (2006), p. 246

    Google Scholar 

  53. P. Oberndorff, M. Dittes, P. Crema, P. Su, E. Yu, Humidity effects on Sn whisker formation. IEEE Trans. Elect. Packag. Manuf. 29, 239–245 (2006)

    Article  Google Scholar 

  54. P. Oberndorff, M. Dittes, P. Crema, S. Chopin, whisker formation on matte Sn influencing of high humidity, in Proceedings of the 55th Electronic Components and Technology Conference, vol. 1 (2005), pp. 429–433

    Google Scholar 

  55. M.W. Barsoum, E.N. Hoffman, R.D. Doherty, S. Gupta, A. Zavaliangos, Driving force and mechanism for spontaneous metal whisker formation. Phys. Rev. Lett. 93(20), 206104-1–206104-4 (2004)

    Google Scholar 

  56. P. Su, M. Ding, S. Chopin, Effects of Reflow on the Microstructure and Whisker Growth Propensity of Sn Finish, in Proceedings of the 55th ECTC (2006), pp. 434–440

    Google Scholar 

  57. J. Osenbach, R. Shook, B. Vaccaro, B. Potteiger, A. Amin, P. Ruengsinub, Lead free packaging and Sn-Whiskers, in 54th Electronic Components and Technology Conference (2004), pp. 1314–1324

    Google Scholar 

  58. B. Hilty, N. Corman, F. Herrmann, Electrostatic fields and current flow impact on whisker growth. IEEE Trans. Electron. Packag. Manuf. 28(1), 75–84 (2005)

    Article  Google Scholar 

  59. M. Sampson, H. Leidecker, J. Kadesch, J. Brusse, Demonstration of the Bending of a Tin Whisker Caused by Electrostatic Attraction, GSFC experiment #4 (2005), http://nepp.nasa.gov/whisker/experiment/exp4/index.html

  60. S.H. Liu, C. Chen, P.C. Liu, T. Chou, Tin whisker growth driven by electrical currents. J. Appl. Phys. 95(12), 7742–7747 (2004)

    Article  ADS  Google Scholar 

  61. iNEMI Tin Whisker User Group: Tin Whisker Acceptance Test Requirements (2004)

    Google Scholar 

  62. NASA: Basic Info on Tin Whiskers, http://nepp.nasa.gov/whisker/background/

  63. R.M. Fisher, L.S. Darken, K.G. Carroll, Accelerated growth of tin whiskers. Acta Metall. 2(3), 368–372 (1954)

    Article  Google Scholar 

  64. G.T. Galyon, Annotated tin whisker bibliography and anthology. IEEE Trans. Electron. Packag. Manuf. 28(1), 94–122 (2005)

    Article  Google Scholar 

  65. J.A. Thornton, D.W. Hoffman, Stress-related effects in thin films. Thin Solid Films 171, 5 (1989)

    Article  ADS  Google Scholar 

  66. JESD22-A121A: Measuring Whisker Growth on Tin and Tin Alloy Surface Finishes (2008)

    Google Scholar 

  67. L. Panashchenko, Evaluation of Environmental Tests for Tin Whisker Assessment, Masters of Science Thesis Defense at University of Maryland (2009), http://hdl.handle.net/1903/10021

  68. Y. Fukuda, M Osterman, M. Pecht, Length distribution analysis of tin whisker growth. IEEE Trans. Electron. Packag. Manuf. 30 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erika R. Crandall .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Crandall, E.R. (2013). Introduction: Whiskers and Their Role in Component Reliability. In: Factors Governing Tin Whisker Growth. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-00470-9_1

Download citation

Publish with us

Policies and ethics